
Dynamic Object Process Graphs

von Jochen Quante

Dissertation

zur Erlangung des Grades eines
Doktors der Ingenieurwissenschaften

– Dr.-Ing. –

Vorgelegt im Fachbereich 3 (Mathematik und Informatik)
der Universität Bremen

im September 2008

Gutachter: Prof. Dr. Rainer Koschke
Prof. Dr. Jürgen Ebert

Summary

An Object Process Graph is a view on the control flow graph from the perspective
of a single object. It contains the uses of the object and the paths through the
control flow graph that connect these uses. Such a graph can be extracted by static
or dynamic program analysis.

This thesis addresses dynamic extraction of Object Process Graphs and the
applications of these graphs. In a first step, methods for online and offline con-
struction of Dynamic Object Process Graphs are presented. These methods are
shown to be applicable even for large and interactive programs. The second step
is the further transformation and application of the extracted graphs.

Dynamic Object Process Graphs can be used as the basis for protocol recovery
by transforming them to protocol automata. A comparison of the results to sev-
eral traditional dynamic protocol recovery approaches demonstrates their quality.
Another application is the visualization of Dynamic Object Process Graphs for
supporting program understanding. Several case studies illustrate their poten-
tial, and a controlled experiment was performed to assess their general utility for
this purpose.

Altogether, this thesis shows that and how Dynamic Object Process Graphs can
be extracted efficiently and used effectively. Similar to program slicing, Object
Process Graph extraction is an enabling technique with applications in many
reverse engineering tasks.

3

Zusammenfassung

Ein Object Process Graph ist eine Sicht auf den Kontrollflussgraphen aus der Per-
spektive eines einzelnen Objekts. Er enthält im Wesentlichen die Benutzungen des
Objekts sowie die Pfade durch den Kontrollflussgraphen, die diese Benutzungen
verbinden. Ein solcher Graph kann durch statische oder dynamische Programm-
analyse extrahiert werden.

Diese Arbeit beschäftigt sich mit der dynamischen Extraktion von Object Pro-
cess Graphs und deren Anwendungen. Im ersten Schritt werden Methoden zur
Online- und Offline-Extraktion von Dynamic Object Process Graphs vorgestellt.
Ihre Anwendbarkeit – auch für grosse und interaktive Systeme – wird gezeigt. Im
zweiten Schritt werden die Graphen für verschiedene Anwendungen weiterver-
arbeitet und transformiert. Eine Anwendung von Dynamic Object Process Graphs
ist die Rekonstruktion des Protokolls einer Komponente. Dies wird durch Trans-
formation der Graphen zu Protokollautomaten erreicht. Deren Qualität wird
in einem Vergleich mit traditionellen dynamischen Protokollrekonstruktionsver-
fahren gezeigt. Eine weitere Anwendung ist die Visualisierung von Dynamic
Object Process Graphs zur Unterstützung des Programmverstehens. Mehrere Fall-
studien illustrieren das diesbezügliche Potential, und es wurde ein kontrolliertes
Experiment durchgeführt, um die Eignung für das Programmverstehen genauer
zu untersuchen.

Insgesamt zeigt diese Arbeit, dass und wie Dynamic Object Process Graphs ef-
fizient extrahiert und effektiv genutzt werden können. Ähnlich wie das Programm-
Slicing stellen sie eine Basistechnik mit Anwendungen in vielen Bereichen des
Reverse Engineering dar.

5

Acknowledgements

First of all, I would like to thank my advisor, Rainer Koschke. I learned a lot
from him about scientific work and scientific writing in general as well as reverse
engineering techniques and methodology in particular. He also pointed me to
the topic of this thesis at a very early stage, which enabled its completion in a
reasonable amount of time, and contributed many good ideas. He has been a
great advisor; it has been a priviledge to work with him.

I also want to thank Jürgen Ebert, who agreed to be my secondary advisor.
I would specially like to thank him for initiating (along with Franz Lehner) the
Workshop series on Reverse Engineering in Bad Honnef, which is an ideal event
for meeting reengineering people from science and practice. This workshop
provided valuable inspiration and contacts to me.

Thanks to Gunther Vogel for providing the static OPG extraction tools. Also
thanks to all the Bauhaus people who have built this excellent reengineering
infrastructure over the years. Thanks to my colleagues at the University of Bremen
for interesting discussions and stimulation, and in particular to my office mate
Thilo Mende for proof-reading this thesis (and for the cookies). Thanks to Lutz
Prechelt and Leif Kruse, who gave me some useful hints in the preparation phase
of the experiment, and to the 27 students who voluntarily participated. Thanks
to Renate Klempien-Hinrichs, who helped me with several graph transformation
issues. Also many thanks to all the people I met at various conferences for the
fruitful discussions and inspirations.

Thanks to my parents for their ongoing support of almost everything I do.
Thanks to my children Rebecca and Thomas, who were both born during the
work on this thesis and who were always there for a nice distraction from work.
Finally, a big thank you to my wife Kathrin for always supporting me in the
decision to go back to University, which meant moving to a different city, giving
up her job, and living a different life.

Jochen Quante, September 2008

7

Contents

I Prelude 15

1 Introduction 17
1.1 Problem and Context . 17

1.1.1 Software Maintenance . 17
1.1.2 Software Reengineering . 18
1.1.3 Software Architecture and its Recovery 19
1.1.4 Problem Statement . 20

1.2 Approach . 22
1.3 Contributions . 24
1.4 Project Context . 25
1.5 Previously Published Content . 26
1.6 Thesis Outline . 26

2 Tracing and Object Process Graphs 29
2.1 Traces for Individual Objects . 29
2.2 Definition of an Object Process Graph 30
2.3 Object Process Graph Construction Example 34
2.4 Static OPG Extraction . 35
2.5 Static vs. Dynamic Analysis . 37
2.6 Summary . 38

II Extraction 39

3 Dynamic OPG Extraction 41
3.1 Instrumentation . 41

3.1.1 Normalizing Transformation 43
3.1.2 Instrumenting Transformation 44

3.2 Trace to Dynamic Object Process Graph 50
3.2.1 Filtering . 50
3.2.2 Raw Graph Construction . 50
3.2.3 Graph Transformation . 53

3.3 Additional Considerations . 59
3.4 Summary . 61

9

Contents

4 Online DOPG Extraction 63
4.1 Problem Characterization . 63
4.2 Online Construction . 64
4.3 Case Study: Tracing Overhead Online/Offline 68

4.3.1 Subject Systems and Procedure 68
4.3.2 Results . 71

4.4 Summary . 74

5 Case Study: Comparison to Statically Extracted OPGs 77
5.1 Procedure . 77
5.2 Underlying Points-To Analysis . 78
5.3 Subject Systems . 79
5.4 Results . 80
5.5 Summary . 85

III Applications 87

6 Case Study: What DOPGs can tell 89
6.1 Subject Systems . 89
6.2 Symbol Table of a Large Compiler 90
6.3 Sockets in IRC Clients . 92

6.3.1 ircII . 93
6.3.2 Rhapsody . 95

6.4 SQLite Database . 97
6.5 Summary . 98

7 Dynamic Protocol Recovery 99
7.1 Introduction . 99
7.2 Protocol Representation . 100
7.3 Related Research . 101
7.4 OPG Based Protocol Recovery . 103

7.4.1 Algorithm . 104
7.4.2 Recursion Elimination . 106
7.4.3 Generalization . 107

7.5 Comparing Protocol Automata . 108
7.6 Case Study . 111

7.6.1 Setup and Subject Systems 112
7.6.2 Results . 114

7.7 Summary . 118

8 Supporting Program Understanding by Visualized DOPGs 121
8.1 Description of the Experiment . 121

8.1.1 Hypotheses . 121
8.1.2 Experiment Design . 122

10

Contents

8.1.3 Subjects . 123
8.1.4 Experiment Tasks . 124
8.1.5 Experimental Procedure . 128
8.1.6 Threats to Internal Validity 129
8.1.7 Threats to External Validity 130

8.2 Results and Discussion . 131
8.2.1 Response Time . 132
8.2.2 Correctness of Answers . 133
8.2.3 Questionnaire . 135
8.2.4 Discussion . 136

8.3 Summary . 137

IV Finale 139

9 Related Work 141
9.1 Related Techniques . 141

9.1.1 Static Trace Extraction . 141
9.1.2 Slicing . 142
9.1.3 Call Graph Restriction to a Use Case 143
9.1.4 Object Flow Analysis . 144
9.1.5 Feature Location . 145

9.2 Tracing . 146
9.2.1 Instrumentation . 146
9.2.2 Trace Compaction and Representation 147

9.3 Dynamic Software Visualization . 148
9.4 Diagram Extraction . 149

9.4.1 Interaction Diagrams . 149
9.4.2 State Diagrams . 151
9.4.3 Other Diagrams . 153

9.5 Protocol Recovery . 153
9.5.1 Static Trace Extraction . 153
9.5.2 Regular Grammar Inference 154
9.5.3 Object State Based Approaches 155
9.5.4 Other Static Approaches: Avoiding Safety Violations 156
9.5.5 Recovering Algebraic Specifications 157
9.5.6 Specification Mining . 158
9.5.7 Process Mining . 160
9.5.8 Grammar based Protocol Specification 160
9.5.9 Protocol Validation . 161

9.6 Experimentation in Software Engineering 162

11

Contents

10 Conclusions 163
10.1 Summary and Conclusions . 163
10.2 Opportunities for Future Research 164

10.2.1 Identifying Appropriate Objects 165
10.2.2 Combination with Feature Location 165
10.2.3 Layout Algorithms for DOPGs 165
10.2.4 Improving Protocol Recovery 166
10.2.5 Using Concurrency Information 166
10.2.6 Online Visualization . 166
10.2.7 Product Line Consolidation 167
10.2.8 Criteria for Usefulness . 167

10.3 Closing Words . 168

Appendix 168

A Finite State Automata 169
A.1 Basic Definitions . 169
A.2 Algorithms . 170

A.2.1 NFA to DFA: The Subset Construction 170
A.2.2 The Union of two Automata 170
A.2.3 Automaton Minimization . 171
A.2.4 Product Automaton . 171

B Graph Transformation Basics 173

C Experimenter’s Handbook 175
C.1 Introduction . 175
C.2 Phase 1: Welcome & Introduction . 177
C.3 Phase 2: Training and Practice . 178
C.4 Phase 3: Experimental Tasks . 179
C.5 Phase 4: Finishing . 179

D Experimental Tasks and Instructions 181
D.1 Practice System: Jetris . 181
D.2 System 1: ArgoUML . 182
D.3 System 2: GanttProject . 183

E Experimental Questionnaires 185
E.1 Pre-study Questionnaire . 185
E.2 Post-study Questionnaire . 186

F Statistical Tests 187
F.1 Student’s t-test . 187
F.2 Mann-Whitney U test . 187
F.3 Bootstrapping . 188

12

Contents

Glossary 189

Bibliography 192

Index 211

13

Part I

Prelude

15

Chapter 1

Introduction

1.1 Problem and Context

“Software is everywhere in modern civilization. Software is in your mobile phone, on
your home computer, in cars, airplanes, hospitals, businesses, public utilities, financial
systems, and national defense systems. Software is an increasingly critical component
in the operation of infrastructures, cutting across almost every aspect of global, national,
social, and economic function. One cannot live in modern civilization without touching,
being touched by, or depending on software in one way or another.” [159]

Grady Booch estimates that there must be about 800 billion source lines of
code (SLOC) in the world, with an additional 30 billion SLOC newly produced
per year [20]. Although this is only a very rough guess, it is probably the right
order of magnitude and illustrates the importance of software. A large portion of
this vast amount of code is still running and has to be maintained.

1.1.1 Software Maintenance

Software maintenance is the “modification of a software product after delivery to correct
faults, to improve performance or other attributes, or to adapt the product to a changed
environment” [84]. If software is not maintained, it becomes useless after some time,
because the environment is continually changing. This effect is called “software
aging” by David Parnas [139]. It was first described by Lehman and Belady and
is known as their “law of continuing change” [109]. Another one of their laws
states that if the system is adjusted, that is, maintained, “ignorant surgery” [139]
leads to steadily increasing complexity. What does that mean? Maintenance is often
performed by people who are not familiar with the original design concepts – be it
due to lack of information, lack of time, or other reasons. Therefore, such changes
are often performed in a way that is inconsistent with the original developers’
ideas. Also, these maintainers often only have a local view on the system and do
not understand the impact of their changes, introducing new and possibly subtle
errors. And even if the changes are performed with the system’s architecture in
mind, there often is no time to do the changes in a correct and consistent way.

17

Chapter 1 — Introduction

As more and more of this kind of changes occur, a system gets increasingly less
comprehensible and more complex, and therefore each further change becomes
even more expensive. Obviously, the combination of these two Lehman’s rules
means that software ages inevitably and has to be replaced at some point – if no
counteractive measures are taken.

According to some (rare) studies, software maintenance accounts for up to 80%
of a product’s total lifecycle cost [134]. This is an astonishingly high share at first
glance, but is comprehensible when regarding our considerations about software
aging. However, this fact is still neglected in practice. Software maintenance is
usually performed by software developers who never had any training about soft-
ware maintenance – although such training could presumably make maintenance
more effective and less error-prone [174]. Other studies have shown that about
50% of the time in software maintenance is spent for gaining an understanding
of the system to be modified alone [54]. This means that techniques that help
to understand a software system – or certain aspects of it – have a great poten-
tial to reduce maintenance costs. Corbi [33] gives an overview of the associated
challenges.

1.1.2 Software Reengineering

This is where Software Reengineering comes into play. This discipline develops
tools and methodologies which support a maintainer in his work. The goal of
these tools is to provide a better understanding of a system, which should result
in more consistent changes, a higher productivity, and fewer introduced errors
– and the aging process may be slowed down. For example, techniques like
refactoring [55] or architecture compliance checking [131] can be helpful for the latter.
When a system finally has to be replaced, Software Reengineering techniques help
in the migration process. But let us first define what Software Reengineering and
related terms mean.

Reverse engineering has its origin in the analysis of hardware [27]. There,
it is applied to recover a product’s internal design when only the end product
is available. The purpose usually is to improve an own product or to analyze
a competitor’s or an adversary’s product. Software Reverse Engineering (SRE)
is the application of this idea to software: based on the available artifacts of a
system, such as its code, it is the task of trying to recover any unavailable docu-
mentation, that is, raising the abstraction to a higher level. However, in contrast
to the hardware domain, it usually focusses on one’s own code. It is basically the
inversion of the normal software development activities, which are called For-
ward Engineering for differentiation. The main goal of SRE usually is to gain a
sufficient design-level understanding of a system to aid maintenance, strengthen
enhancement, or support replacement [27]. Software Reengineering addition-
ally includes the subsequent alteration or transformation of the system. Figure 1.1
illustrates the relation of the different terms. Conceptually, Reverse Engineering
also includes recovering the specification from a given design. However, this is

18

1.1 Problem and Context

Specification

Requirements Architectural

Description
Code

Architecture

Design Implementation

Forward Engineering

Reverse Engineering

Reconstruction

Figure 1.1: Forward and Reverse Engineering. The combination of both is
Software Reengineering.

hardly ever explicitly done in practice. The requirements specification will rather
be recovered by looking at the visible behavior of the running system.

The anticipated design-level understanding of a given system cannot be ob-
tained from the design documentation alone, because the latter is often out of
date, or it does not exist at all. The only reliable source of information regarding
the structure of a system is the system itself. SRE therefore usually tries to recover
the system’s design based on the code (static analysis) or on observations of the
running system (dynamic analysis). Of course, any additional information that is
available may be used and can be helpful in this process, but the system itself
makes up the only information that is always available and reliable.

1.1.3 Software Architecture and its Recovery

Software Architecture is “the fundamental organization of a system, embodied in its
components, their relationships to each other and to the environment, and the principles
guiding its design and evolution” [86]. This is one thing that SRE tries to recover: the
fundamental organization of a system. It is impossible to grasp the information
about a system’s organization all at once for non-trivial systems. Therefore,
we need to look at the system from different viewpoints to describe it in its
entirety [104]. Only the sum of different views (that is, instances of viewpoints)
gives the full picture. Depending on the task at hand, we can then use the view
that is best suited for that task. For example, if we want to gain a rough overview
of a system, we will like to have a high-level logical view which contains just
the basic design elements and their relationships (conceptual view). If we are to
implement or test part of that system, we will need more detailed information,
in particular interface definitions, which could be found in a view that shows the
decomposition of the system into modules (module view) [80].

As motivated above, the architecture of a system is often not available and has
to be reconstructed. Certain views are easy to reconstruct: in many cases, infor-
mation about which routines exist and what their signatures are can be extracted
from source code without much effort. For some programming paradigms, such
as object-oriented programming, it is also easy to detect modules or classes and
their syntactic interfaces, because these are explicitly described in the code – but

19

Chapter 1 — Introduction

for others, such as C, it is a hard problem to find out which routines and attributes
belong together [96]. However, object-orientation also has its drawbacks: it makes
programs harder to understand [211].

The module view may be easily available, but it contains information at a quite
low level. A larger system may consist of thousands of modules. In order to just
get an overview of the basic design of a system, it is infeasible to look at all the
individual modules and their interdependencies: you will not see the wood for
the trees. It is therefore necessary to recover more abstract views. However, this
is a challenging problem: what are meaningful aggregations of modules? Also,
the modules as defined by syntactical units may not be identical to the real logical
components – groups of related elements with a unifying common goal or architec-
tural concept. In other words, the modularization may be suboptimal. Software
clustering techniques are one approach to tackle these problems. Unfortunately,
the clustering criteria cannot be exactly defined; therefore, support of a human
expert is indispensable [96, 129].

An alternative to clustering is filtering: the information is reduced to those
artifacts that are probably most relevant for the currently examined aspect of a
system. Unfortunately, this bears the risk that too much information is filtered
out. Apart from automatic approaches, both techniques – clustering and filtering
– are also employed in interactive Software Visualization environments.

Visualization is “the process of transforming information into a visual form, en-
abling users to observe the information. The resulting visual display enables the scientist
or engineer to perceive visually features which are hidden in the data but nevertheless are
needed for data exploration and analysis.” [59] The visualization of software is another
important technique for software architecture recovery: information about arti-
facts of a system is visualized in some way, and the interpretation and abstraction
is left to the human user. Also, when higher-level abstractions have been built
automatically, the results have to be presented to the user, which is a visualization
as well.

1.1.4 Problem Statement

We have seen that information about modules and their interdependencies can
be recovered from the source code in many cases. However, the interface of
a component consists of more than just exported declarations. According to
Parnas [140], the interface also covers the assumptions that a using component is
allowed to make about it, and the assumptions that the component makes about its
used components. For example, this covers pre- and postconditions for routines
or restrictions on allowable parameters. Another important aspect of the interface
is the set of allowable sequences of routine calls. In this thesis, we call this the
protocol of the component. Whereas the exported declarations are the syntactic
interface, the protocol is part of the semantic interface. This is another aspect of a
software’s architecture that may need to be recovered.

20

1.1 Problem and Context

typedef struct { ... } Stack; /* Stack data structure */

Stack *create(); /* creates a new Stack instance */
void init (Stack *s); /* initializes a Stack */
void push (Stack *s, Item e); /* put e on top of the Stack */
Item pop (Stack *s); /* remove+return the top element */

Figure 1.2: Interface of a Stack component.

Definition: The protocol of a component defines the allowed sequences of
routine calls that may be invoked on it or on an instance of it.

As an example, take a look at the synactic interface of a Stack component as
shown in Figure 1.2. Let us assume the usual semantics for a stack. When using
this component, you have to be aware of several restrictions: a Stack object first
has to be created and initialized (create, init) before any of the other routines
may be called. Additionally, popmay only be called if there is at least one element
on the Stack, or, in other words, if the total number of pushes is higher than the
number of pops. Otherwise, there would be no element to remove from the Stack
– an error which may lead to weird subsequent errors if it is not handled in an
adequate way. The source of this error can be very hard to find. It is easy to avoid
such errors if the protocol for the component is defined and checked for. This
example shows that there can be sequence restrictions and also more complex
usage restrictions for a component. The protocol of the component describes
these restrictions.

Unfortunately, defining such a protocol is not supported by most program-
ming languages. A component’s protocol therefore often remains unspecified.
Even if it is specified, this is usually only done in an informal way, either in the
documentation or as comments in the code. When the protocol of a component
is available, it is very useful for automatically checking if the component is used
correctly in a given application. It can also be used to apply state-based testing
techniques to the component itself to check if it is implemented correctly. When
the protocol is not available, systematic testing of stateful components is hardly
possible. Therefore, it is absolutely desirable to have a formal specification of the
protocol. And it would be of great help if the protocol could be automatically or
semi-automatically extracted from the code. This reconstruction is called protocol
recovery.

There are two possible approaches to this problem [100]. One can look inside
the implementation of the component to find out about its protocol, which may
work when defensive programming has been used (glass-box understanding). The
alternative is to look at how the component is being used by one or several
applications (black-box understanding). If the applications use the component in
a correct way, this should also give a good picture about the allowable ways of
using the component. One contribution of this dissertation is a new dynamic
black-box protocol recovery technique.

21

Chapter 1 — Introduction

1.2 Approach

As introduced above, the protocol of a component (in the sense of this thesis) de-
scribes the allowable sequences of operations that may be applied to it. However,
a component is not purely static – its state has to be considered when talking about
the protocol. When a component has no state, the allowable order of operations is
usually unrestricted. It is therefore more interesting to regard the protocol of a dy-
namic object instead of a static component. From a general perspective, we could
define any allocated region of storage to be an object. The protocol for such an
object would not be of much help because memory only has the operations read
and write. Therefore, let us take an object-oriented view and additionally regard
the routines that operate on that memory as belonging to the object. Routines that
belong to one particular object are called its atomic methods.

As motivated in the previous section, the protocol is often unspecified and
has to be recovered first. Quite a number of protocol recovery approaches have
been published in the past; Chapter 9 gives a complete overview. Very few of
these approaches examine the component’s code: the majority belongs to the
black-box understanding class. These black-box approaches either use static or
dynamic analysis. They are either based on the concrete sequences of operations
that are or may be applied to the object, or they abstract from the object’s state.
The latter track how the object’s state – that is, the contents of its memory area –
changes and how these changes are related to atomic method calls. The resulting
state automata describe the impact of modifying method calls on the object’s
state; read-only method calls are not considered and cannot be considered. These
approaches therefore produce a kind of protocol that is different from what we
are interested in. For example, the fact that is_empty is always called before pop
for a given stack object cannot be recovered.

Approaches that are based on analyzing concrete sequences of operations on
an object try to deduce the general protocol of the object from these sequences.
Regular grammar inference techniques are usually applied for this. Using such
an approach has several advantages: the necessary interface-level information is
easy to extract, the instrumentation is quite lightweight, and regular grammar
inference techniques have been studied for a long time and are readily available.
On the other hand, these approaches have to speculate whether sequences of
identical operations result from a loop or not, because they do not take into
consideration the context in which each operation is called. Therefore, they tend
to overgeneralize. One effective approach to prevent this is to query the user in
the generalization step. However, this interaction is quite expensive, since a lot
of queries are necessary even for simple protocols [201].

Figure 1.3 shows an example for a protocol recovery approach that is based
on interface interactions only. We regard a simple Stack object (depicted in the
center) as introduced above. The activity diagram on the left-hand side illustrates
the sequence of operations that is applied in a given program run which uses
this object. This sequence is always linear, that is, it does not have any branches.

22

1.2 Approach

Memory

pop

push

init

create

call

call

call

call

create

call

call

call

B

A

call

Figure 1.3: Pure sequence of operations called on an object (left) compared to the
OPG representation (right), illustrated on a simple Stack object (center). A and
B denote routines.

Also, the call sites are anonymous, which means that we do not know who is using
the object; we just know that it is used. This kind of information is the input to
traditional dynamic protocol recovery approaches.

To improve the basis for protocol recovery, I propose to widen the perspective
with respect to the object: let us allow the object to find out from where it is
used and how these usages are connected through control flow. This information
can be represented by a data structure called Object Process Graph (OPG). The
right-hand side of Figure 1.3 shows the corresponding OPG. From that diagram,
we can additionally identify control structures such as branches (the diamond
demarks a decision), loops, and routine calls which affect how the program gets
to that point. Based on that graph, we can find out for sure whether an operation
is called from within a loop or not, and this in turn should improve the quality of
a protocol that is recovered on this extended basis.

The OPG from the example is quite small and clear, and it would look just
the same even if the use of that Stack object was embedded into a much larger
program. It is a quite meaningful subgraph of the control flow graph, and in
this regard it is the result of automatic filtering. The OPG may even give a good
impression about the application’s general structure, if the object is of central
concern for the application: it shows the locations in the program where the
object is used and how these uses relate to each other. If object and function
names are meaningful, this can give additional hints for understanding a program.
Altogether, OPGs have the potential for being a good starting point for program
comprehension.

The basic idea of OPGs and a static technique for extracting them was proposed
by Eisenbarth et al. [46]. However, the graphs that result from their technique
become very large for objects with a complex usage profile. They often contain
lots of infeasible paths due to the conservative assumptions that are necessary in
any static analysis.

23

Chapter 1 — Introduction

In this thesis, I describe how OPGs can be extracted by dynamic analysis,
resulting in Dynamic Object Process Graphs (DOPGs). This reduces the graphs’
size, avoids infeasible paths, and enables new applications that are impracticable
with the static approach.

My hypothesis is that

1. OPGs can be extracted dynamically (feasibility),

2. DOPGs are a good basis for protocol recovery, and

3. visualized DOPGs can be helpful for program understanding.

1.3 Contributions

The contributions of my thesis are severalfold:

• OPG meta-model: I introduce a meta-model for OPGs. Such a model
has not been explicitly defined before. The model contains support for
multithreading and exception handling.

• Dynamic OPG extraction techniques: I describe in detail how OPGs can be
extracted by dynamic analysis This particularly includes instrumentation
of the program and transformation of traces to DOPGs. Exception han-
dling and multithreading is considered in this approach. Apart from the
basic extraction technique, I also introduce an online extraction technique
which reduces the runtime overhead. This makes the approach applicable
in practice.

• Feasibility of approach: The feasibility is shown in a case study that mea-
sures the runtime overhead of this approach. Also, DOPGs for a number of
systems and objects are exemplarily studied.

• Comparison to static technique: In another case study, I quantitatively com-
pare the OPGs resulting from dynamic tracing to those from static tracing.

• Application for protocol recovery: Building on others’ research, I describe
the OPG based protocol recovery process in detail and apply it to DOPGs.

• Comparison to other dynamic protocol recovery techniques: I compare
the results of this protocol recovery approach to other existing dynamic
approaches. As an additional indicator for this comparison, I introduce and
use a new automaton difference metric.

• Application for program understanding: I report from a controlled exper-
iment that I conducted to investigate whether visualized DOPGs help in
program understanding. Procedure and results are discussed in detail in
this thesis.

24

1.4 Project Context

1.4 Project Context

The work on this thesis was performed as part of the Bauhaus project [97, 154].
Bauhaus started in 1997 as a research collaboration between the Institute for
Computer Science of the University of Stuttgart and the Fraunhofer Institute
for Experimental Software Engineering in Kaiserslautern (IESE). Today, it is a
collaboration between the University of Stuttgart and the Software Engineering
group at the University of Bremen. Since 2005, the commercial spin-off “Axivion”1

is also part of the project.
The goal of this project is the development of methods and tools that support a

maintenance engineer in his or her work. In particular, these methods aim at semi-
automatically recovering different views on an existing system’s architecture.
The project is internationally well-known for its contributions in the areas of
architecture reconstruction, feature location, clone detection, software clustering,
product line consolidation, and protocol recovery.

The project has meanwhile created a strong infrastructure that supports anal-
yses on different levels of granularity. The fine-grained intermediate representa-
tion (IML) is capable of representing programs from different languages and is
equipped with control flow, data flow, and points-to analyses. The coarse-grained
representation (RFG) contains information and dependencies at the interface level
only, but is more appropriate for architectural analyses and can handle very large
systems.

Traditionally, the Bauhaus project focussed on static analyses, with the ex-
ception of a combined static/dynamic feature location technique [46]. The work
presented in this thesis is based on dynamic analysis and program transformation.
Both techniques introduce new aspects to the Bauhaus project. On the other hand,
it is a continuation of other people’s work within the project: several researchers
and students have also worked on the topics tracing, OPGs, and protocol recov-
ery, and Gunther Vogel is currently finishing a closely related dissertation which
covers static OPG extraction and protocol recovery issues [198].

1http://www.axivion.com/

25

Chapter 1 — Introduction

1.5 Previously Published Content

A large share of the contents of this thesis has been previously published. Table 1.1
summarizes these publications and where their contents occur within this thesis.

Reference Title where pub-
lished

Chapters

[148] Dynamic Object Process Graphs CSMR 2006 3, 6
[150] Dynamic Object Process Graphs Journal of

Systems and
Software

3, 5, 6

[146] Online Construction of Dynamic Ob-
ject Process Graphs

CSMR 2007 4

[149] Dynamic Protocol Recovery WCRE 2007 7
[147] Do Dynamic Object Process Graphs

Support Program Understanding? –
A Controlled Experiment

ICPC 2008 8

Table 1.1: Previous publications of this thesis’ content.

1.6 Thesis Outline

This thesis is organized in four parts, with the two middle parts containing the
main contributions. In Part II, the dynamic extraction techniques are presented
and evaluated, and in Part III, two applications of DOPGs are examined in more
depth. Figure 1.4 sketches the general organization of the thesis.

The following Chapter 2 is an introduction to the notion of Dynamic Object
Process Graphs. It contains the meta-model for this special kind of graph, summa-
rizes an existing static extraction technique, and discusses the general differences
between static and dynamic analysis.

The basic dynamic extraction technique is presented in Chapter 3, which starts
Part II. As opposed to the constructive static technique, this approach is based
on graph transformations. The necessary instrumentation and trace analysis are
described in detail. To master the overhead that is caused by tracing, an online
extension to the algorithm is introduced in Chapter 4. This chapter closes with a
case study that analyzes the runtime overhead for different systems with the two
approaches. Chapter 5 compares DOPGs to the corresponding graphs that have
been extracted by static analysis. This case study completes Part II.

Part III starts with the presentation of several case studies (Chapter 6). They
demonstrate the use and feasibility of the approach and sketch potential applica-
tions. These case studies are the basis for the deeper investigation of two main
applications: Protocol recovery and program understanding. Protocol recovery
is discussed in Chapter 7. Existing ideas for OPG based protocol recovery are

26

1.6 Thesis Outline

analysis
dynamic

Program
Running Program

Underst.

Protocol
Recovery

visuali−
zation

mation
transfor−Source

Code
static

analysis

Chapters 3+4

Section 2.4 Chapter 7

Chapters 6+8

Chapter 2

C
h

a
p

te
r

5

OPG

RepresentationExtraction Applications
Part IIIPart IPart II

Figure 1.4: Thesis Overview.

extended and described, and in a case study, this technique is compared to other
common dynamic protocol recovery techniques. Chapter 8 contains the descrip-
tion and discussion of a controlled experiment that was conducted to find out if
DOPGs really support program understanding – a hypothesis that was raised as
a result from the case studies.

Chapter 9 in Part IV contains an extensive overview of related work, and
Chapter 10 concludes.

27

Chapter 2

Tracing and Object Process Graphs

In this chapter, I define what a trace is in the context of this thesis and show how
sets of traces can be represented by Object Process Graphs. I give a constructive
definition and a meta-model for these graphs. The basis for this has been provided
by Eisenbarth, Koschke and Vogel in their papers about static trace extraction [45,
46]. In this chapter, it is formalized and extended to cover techniques such as
multithreading and exception handling. I give a short summary of their static
extraction technique and their experiences with it. A general discussion of static
and dynamic analyses and their pros and cons finishes the chapter.

2.1 Traces for Individual Objects

Let us start with a motivating example. Consider the C program in Figure 2.1.
It deals with two stacks *s1 and *s2. We assume the usual semantics for stacks
here. Function read reads a stack from a file, and init creates an empty stack.
Although the program has passed all tests, how sure can we be that it does not
cause a failure? And in fact, it contains a potential fault that is difficult to spot in the
code: a violation of the stack protocol for variable *s1. Through the static analysis
by Eisenbarth, Koschke, and Vogel, we can extract all sequences of operations

01 void main () {
02 int i = 0;
03 Stack *s1 = init();
04 Stack *s2 = read();
05 reverse(s2, s1);
06 do {
07 pop(s1);
08 i = i + 1;
09 } while (!empty(s1));
10 }

11 void reverse
12 (Stack *from, Stack *to)
13 {
14 while (!empty(from)) {
15 push(to, pop(from));
16 }
17 }

Figure 2.1: Example source code.

29

Chapter 2 — Tracing and Object Process Graphs

potentially applied to *s1 – including those that violate the protocol. (We will
lateron see how this can help to detect the error, and what the actual error in this
example is.)

Each such sequence of operations is an object trace. A trace is “a record of the
execution of a computer program, showing the sequence of instructions executed, the
names and values of variables, or both.” [85] We are specially interested in how a
given object is used within a program. By object, I mean a certain memory area
along with the associated operations on it. In practice, this can be a local or global
variable or a variable allocated on the heap at runtime – or an instance of a class.
An object trace is a sequence of operations applied to one specific object.

2.2 Definition of an Object Process Graph

As stated earlier, we want to “widen the perspective” of a regarded object: we
want to know the locations of any object uses, and we want to know how those
uses relate to each other. The data structure that contains the information about the
latter is the interprocedural control flow graph (CFG). The CFG is a well-known
concept from compiler technology. A CFG is constructed by creating one node
for each statement in the code and connecting those nodes via edges according to
the control flow of the application.

However, a CFG contains information about the entire program, which makes
it very large and bulky. For understanding a program or getting information
about the use of certain objects, this data structure is not adequate. An Object
Process Graph (OPG) is a projection of the control flow graph that contains only
those nodes that are relevant from the perspective of a given object. They reduce
the CFG to the really interesting parts (with respect to that object) and allow us to
reason about individual objects. The nodes of an OPG correspond to events in an
object trace: the OPG describes a potentially infinite object trace in a finite closed
form.

We now have to define what “relevance” means for a CFG node. This defini-
tion is in turn based on the notion of control dependency.

exit

n

c

Definition: A node n of the CFG is directly control depen-
dent on a node c iff c decides whether n is executed or not.
This is the case when c has at least two successors, there is a
path from c to n, there is a path from c to the exit node that
does not pass n, and c is the last node with that property.

Definition: A node n of the CFG is relevant for an object obj iff

• it represents an operation on obj (creation, attribute access, or invocation of
one of the object’s methods), or

• there exists a relevant node that is control dependent on n.

30

2.2 Definition of an Object Process Graph

Input: CFG, object
Output: OPG for that object

Mark all nodes of the CFG that represent operations on the given object.

while there is an unmarked node n of which at least one of the marked
nodes is control dependent do

mark n

foreach unmarked node u do
remove u, connect the dangling edges

Insert start, end, and return nodes.

Figure 2.2: Basic OPG construction algorithm.

This recursive definition of relevance can be used to construct an OPG from a
given CFG and object. The algorithm is shown in Figure 2.2. Note that it is missing
some details; it is just intended as an illustration of the general idea. Details about
the construction algorithm are provided in the subsequent chapters.

An OPG is represented as a typed, attributed, and directed multigraph. “Typed”
means that the nodes’ labels are divided into classes, called types, and that edges
of a certain type are restricted to be incident only to certain types of source and
target nodes. “Attributed” means that attributes, such as numbers or text, can be
attached to the nodes and edges. “Multigraph” means that there may be more than
one edge that connects the same two nodes. Graphs of this kind have generally
proven to be useful for Reverse Engineering and are known as TGraphs [42].

The meta-model for OPGs is shown as a UML class diagram in Figure 2.3. This
model describes which node classes may be connected by which edges. Thick ver-
tical arrows denote generalizations, while thin lines denote associations between
classes. It should be noted that the classes do not require a lot of attributes besides
the associations between them: the object that an OPG relates to is predetermined,
so only method names and source locations (SLoc) remain.

Nodes can be roughly partitioned into two categories: nodes which represent
atomic access or creation of the object (BasicNode), and nodes which are rele-
vant for control flow (DecisionNode, Call/Entry/ReturnNode). Edges stand for
intraprocedural (succ/true/false), interprocedural (call/entry/return), inter-thread
(new_thread), or exceptional control flow (exception/exceptional_return). Ta-
bles 2.1 and 2.2 provide a summary of the different node and edge types and their
meaning. An OPG is a subgraph of the corresponding CFG, therefore each node
in the OPG represents a location in the program, and edges represent control flow
between these locations.

All nodes of the OPG must be reachable from one unique start node st, that
is, there must be a path from st to each other node. This implies that the graph is
connected. Also, all referenced nodes and edges must be members of the OPG,
that is, the graph must be closed. An OPG can more formally be defined as a

31

Chapter 2 — Tracing and Object Process Graphs

BasicNode

DecisionNode

EndNode

CreateNode

ReadNode WriteNode

AtomicCallNode

name : Identifier

Node

sloc : SLoc

StartNode

AccessNode

AnyIncomingNodeOneOutgoingNode

CallNode

CallPairNode

1

1..*

EntryNode

name : Identifier
ReturnNode

AnyInOneOutNode

DestroyNode

true

0..1

false

0..1

return1

call1

new
_thread

0..*

succ 0..1

exception
0..*

exceptional_return

0..*

Figure 2.3: OPG meta-model.

32

2.2 Definition of an Object Process Graph

Class Symbol Meaning
StartNode Unique start point of the OPG.
CreateNode create Creation of the object. This can be a new or malloc

statement or the declaration of a variable.
DestroyNode destroy Destruction of the object. This optional node can

for example be a free statement.
ReadNode read Read access to the object’s memory.
WriteNode write Write access to the object’s memory.
AtomicCallNode operation() Call of one of the object’s methods. These are

called atomic methods.

DecisionNode
F T

A point where control flow can take two different
ways, depending on the boolean value that was
calculated by the previous operation or call.

CallNode callcall Routine call site. The information about the
called routine is kept in CallPairNode.

CallPairNode
call

A helper node that keeps track of an EntryNode
and the ReturnNode that belong together. A call
edge leads to the corresponding method entry
node, and a return edge leads from the return
node back to this node.

EntryNode entry Method entry point.
ReturnNode return Returns from a method invocation to the call site.
EndNode End point of the OPG.

Table 2.1: Node classes overview. Each node corresponds to a statement in the
source code, except for the Start-/EndNode and CallPairNode.

Name Meaning
succ Unconditional control flow.
true Conditional edge, which is taken in case the previous

predicate evaluates to true.
false Conditional edge for the false case.
call Routine call.
return Return from a routine to the call site.
exception Invocation of an exception handler.
exceptional_return Exceptional return from a routine invocation, in case an

exception has not been caught inside the routine. This is
an alternative way of returning from a routine.

new_thread Creation of a new thread.

Table 2.2: Edge types overview. Edges represent control flow.

33

Chapter 2 — Tracing and Object Process Graphs

set of nodes which are typed according to the meta-model classes, along with the
connecting edges and the above mentioned additional constraints:

OPG := (V,E, s, t, l, a)
with s : E→ V, t : E→ V

l : V ∪ E→ Class
a : (V ∪ E) × Attribute→ Value
∃ st ∈ V : l(st) = ”StartNode”

∧ |{st ∈ V | l(st) = ”StartNode”}| = 1
∧ ∀v ∈ V : v is reachable from st

where V is the set of nodes,
E is the set of edges,
s and t assign a source and target node to an edge,
l labels each node and edge with a class, and
a assigns additional attributes to nodes and edges.

UML activity diagrams [165] are used to represent the work flow of a system
and therefore can be used as a notation for Object Process Graphs. The mapping
between OPG nodes and activity diagram nodes is straightforward: the Start-
Node is mapped to UML’s initial node, an EndNode maps to an activity final node.
DecisionNodes are also called decisions in UML. CallPairNodes are depicted by
connecting the call and return edges that belong together with an arc. All other
node types are mapped to activities and labelled with their type. Table 2.1 shows
the appearance of each node type.

2.3 Object Process Graph Construction Example

Let me illustrate by an example how an OPG is constructed from a program’s
CFG. The control flow graph for object *s1 of Figure 2.1 is shown in Figure 2.4(a).
The first step is to identify and mark atomic nodes. In the Figure, atomic function
calls for *s1 are marked in black. In the next step, the call of reverse and the
decision nodes (diamonds) are added to the set of marked nodes, because there
are atomic nodes which are control dependent on them. See the dashed arrows
in the Figure which indicate selected control dependencies. After that, all other
nodes are removed, resulting in the graph that is shown in Figure 2.4(b). Note that
it contains only those operations in the program that may be applied to *s1; the
other two objects *s2 and i are not covered. The atomic methods in this example
are those of the stack interface, namely, init, pop, push, and empty. That is, we
treat the stack implementation as a black box.

Let us now take a control flow perspective of the process in which *s1 is
involved. The object is created and returned by init in line 3 and then passed
to reverse in line 5. Within reverse, it is passed to the atomic method push in

34

2.4 Static OPG Extraction

main

F

T

i=0

call

i = i+1

F

T
s2 = read()

empty(from)

pop(from)

return

reverse

entry

empty(s1)

push(to)

s1 = init()

pop(s1)

(a) Control flow graph.

call F

T

call F

T

F

T

main

entry

return

reverse

s1 = init()

pop(s1)

empty(s1)

push(to)

(b) OPG for *s1.

Figure 2.4: Control flow graph and OPG for the sample program from Figure 2.1.
Atomic method calls on object *s1 are marked in black. The dashed arrows
demark selected control dependencies. The right figure shows the OPG for *s1
– a subgraph of the CFG.

line 15 as first parameter. Because that push call site is control dependent upon
the condition in line 14, this condition is part of the OPG, too. Because reverse
contains relevant nodes, its call site in line 5 is relevant as well. Upon return from
reverse, *s1 is accessed by pop in line 7 and empty in line 9, which are atomic
methods. Again, because the loop body contains relevant nodes, the condition of
the loop is kept, too.

Now, let us return to our original question about the fault in this program. The
potential fault is easier to spot in the OPG: there is a path in the program in which
popmay be applied to an empty stack. An empty stack may occur if the predicate
in reverse is false the first time, which in turn is the case when the other stack
object *s2 is empty.

2.4 Static OPG Extraction

Object Process Graphs were introduced by Eisenbarth et al. [45, 46] to “describe
the set of [static] traces relative to a statically detectable object”. A statically detectable
object can be a local or global variable or a heap allocation site. It is identified by
its allocation point. Dynamically, there can be many different incarnations of these
statically detectable objects. The statically detectable objects are an equivalence
class for dynamic objects that share the same potential behavior (that is, the
sequence of operations applied to them).

35

Chapter 2 — Tracing and Object Process Graphs

Eisenbarth et al. [46] described a static OPG extraction algorithm. It is based
on the CFG and runs in two phases. In the first phase, a corresponding object
process node is added for each CFG node that is atomic for the given object. This is
done through a context-sensitive traversal of the CFG, which means that multiple
nodes may be added for the same CFG node if they occur in different contexts.
In the second phase, these object process nodes are connected by control-flow
edges. Additional merge and branch nodes are added in this phase if necessary:
a predicate from the CFG is added as a branch node if any node from the OPG is
control dependent on it. This construction directly follows from the definition of
relevant nodes as given above.

To find out whether a node is relevant or not, static analysis depends on
points-to information. Points-to analyses detect all potential aliases for objects.
The problem that each points-to analysis faces is that many languages allow a
programmer to circumvent the type system. Therefore, these analyses cannot rely
on type information: each pointer may potentially point anywhere. The task of a
points-to analysis is to find out where it can really point to, given the restrictions
of the program.

Points-to analyses mainly differ in two aspects [77, 78]:

• Context-sensitivity: The analysis may either distinguish points-to relations
at different call sites (context-sensitive), or it may unite all possible calling
contexts (context-insensitive).

• Flow-sensitivity: The flow of control may be considered (flow-sensitive) or
ignored (flow-insensitive).

Context- and flow-sensitive analyses deliver quite precise results, but are very
expensive and do not scale for real world applications. On the other hand, when
using less precise points-to information, the results of any analysis that is based
on this information get less precise as well. (Additional information on concrete
points-to analyses can be found in Chapter 5.)

This is also the case for static OPG extraction. Since points-to analyses usually
are conservative, the extracted OPGs will always be an overestimation of the
“real” OPG: they will most surely contain infeasible paths, and we have no clue
what share of paths is in fact infeasible. The case study by Eisenbarth et al. [46]
investigated how use of different points-to analyses affects OPG extraction results.
Both the context- and flow-sensitive analysis by Wilson [213, 214] and a flow-
insensitive, context-insensitive Steensgard-style analysis [177] were applied on
different systems as the basis for static OPG extraction. The result was that
the differences are immense. The exact Wilson analysis was only applicable for
systems of up to 5 KSLOC, which makes it unusable in practice. The Steensgard
analysis produced graphs that were between two and five times the size of the
corresponding Wilson-based graphs on average (for heap objects). A system of
74 KSLOC resulted in OPGs of up to 90,000 nodes. In summary, the conservative
assumptions that an efficient points-to analysis has to adhere to can make the
results of static OPG extraction unusable.

36

2.5 Static vs. Dynamic Analysis

2.5 Static vs. Dynamic Analysis

As discussed above, static analyses face several problems which may restrict their
applicability. Besides the aliasing problem, also techniques such as polymor-
phism, dynamic binding, or distribution are hard to handle with static analyses.
They are mostly based on conservative assumptions which lead to infeasible paths
– paths that can never be executed by the program.

An alternative is to use dynamic analysis [183]. While static analysis is based
on the source code only, dynamic analysis investigates a program’s behavior
during runtime. When the program is actually executed, we know for sure where
a concrete pointer points to, or which concrete routine is called by a function
pointer. Therefore, the problems of static analysis are not an issue for dynamic
analysis.

Unfortunately, dynamic analyses face different problems. When a program is
executed, its behavior depends on the input – and the possibilities for different
input are usually infinite. Therefore, the results of any dynamic analysis will in
most cases be incomplete. Another problem is that the behavior of the program
is changed by any dynamic analysis: either the program itself has to be changed
(instrumentation), or the program has to be executed in a virtual machine. It may
become larger or be executed slower. Also, the resulting amount of data gets huge,
depending on which information is to be monitored – specially in the presence
of loops. Furthermore, execution of a program may be expensive, for example if
special test equipment is required.

Apart from these potential drawbacks, dynamic analysis also offers additional
advantages over static analysis. Static analysis has a quite local view on a program
due to the necessary abstractions: the further it proceeds, the more information
is lost. In contrast to that, dynamic analysis is capable of revealing more distant
relationships. It may therefore be helpful for recovering delocalized plans – pieces of
code that are conceptually related, but physically located in non-contiguous parts
of a program [175]. Another advantage is that basic dynamic analyses are easier
to implement than static analyses, which often require a strong infrastructure of
control and data flow analyses as a basis.

Each approach has its pros and cons. In several ways, they complement each
other: dynamic analysis gives us the lower bound of what could happen whereas

Result of dynamic analysis

Result of static analysis

The truth

Figure 2.5: Results of static and dynamic analysis in comparison: static analysis
usually delivers an overestimation, dynamic analysis an underestimation. The
truth lies inbetween.

37

Chapter 2 — Tracing and Object Process Graphs

static analysis yields the upper bound. This is illustrated in Figure 2.5. Therefore,
the combination of static and dynamic analyses is quite promising [51]. And,
of course, it depends on the goal of the analysis which one is more appropriate.
In Chapter 5, we will investigate how the results of static and dynamic OPG
extraction compare to each other.

2.6 Summary

This chapter provided the basics about OPGs. It introduced a schema for this
special class of graphs and discussed an existing static extraction technique. We
learned that dynamic analysis is in many aspects complementary to static analysis.
In particular, dynamic analysis avoids certain problems that static analysis faces.
An OPG extraction technique that uses dynamic analysis is introduced in the next
chapter. The Stack program will be used as a running example.

38

Part II

Extraction

39

Chapter 3

Dynamic OPG Extraction

We have seen how OPGs can be extracted by static analysis and what the draw-
backs are. A corresponding dynamic analysis will circumvent the problems of
static analysis and enable new applications for OPGs. On the other hand, it will
only result in a subgraph of the “real” OPG.

This chapter introduces such a dynamic extraction technique. We start with
the instrumentation of the subject system which makes it produce traces. Then I
describe how to build a graph from these traces and how to transform that graph
to an OPG. An example illustrates the approach.

3.1 Instrumentation

For collecting runtime information from a running program, which is the basis for
any dynamic analysis, a program monitor is needed. This monitor can be located
at different stages of compilation and execution. Figure 3.1 shows an overview of
possible instrumentation locations. The monitor can either modify the code and
insert tracing commands, or execute the program in a virtual machine [170]. Both
of these possibilities have their pros and cons. When executing the program in
a virtual machine, the connection to the source code may be missing, specially
for programs that have been compiled to machine language (like C). When using
a debugger for the same purpose, the line by line step width may not be fine-
grained enough. For example, when several branches of a statement are located
on the same line and the condition is complex (for example, containing shortcut
assignments and short-circuit evaluation), one would have to emulate the entire
evaluation in order to analyze each condition – this would end up in implementing
a virtual machine. On the other hand, this approach may be capable of tracing
library routines, which is not possible with code instrumentation in many cases.

Code instrumentation means that we insert additional statements into the
program that output the state of the program or collect whatever information
is necessary at a certain point. The advantage of this approach is that we do
not depend on the existence of an appropriate debugger or virtual machine. On
the other hand, we modify the code, so the program’s behavior might change.

41

Chapter 3 — Dynamic OPG Extraction

Unparser

Transformation

GAST

Parser

Analyzer
GASTSource code

Preprocessor

Source code

Compiler

Object code

Linker

Executable

VM Execution

Byte code

VM Execution

Instrumented artefact

Instrumenting instance

Libs

Figure 3.1: Overview of different possible instrumentation locations.

Additionally, increased program size may be a problem, particularly in embedded
systems.

Different stages of code instrumentation are possible:

• Source code: Insert additional statements directly into the source code. This
is only practicable for instrumentation of artifacts that are easily identifiable
in the code. Problems could be caused by complex expressions. Also, this
approach is highly dependent on the programming language.

• Generalized Abstract Syntax Tree: Insert additional nodes and edges into the
generalized abstract syntax tree (GAST [98]), then generate source code from
that. This has the advantage of working on a level that abstracts from the
concrete programming language.

• Compiler’s intermediate representation / byte code: Insert additional code into an
intermediate representation. Such a representation is usually built of fewer
atomic statements and can therefore be instrumented easier.

• Binary code: Insert additional code into the binary executable of the program.
This can be done either statically or dynamically. The shortcoming of this
method is that the instrumentation is different for every target machine.
However, this is not an issue for virtual machine code (byte code).

For the purpose of DOPG extraction, it is important that the program monitor
works on a fine-grained level. It is necessary to catch every branch in control
flow for reconstructing conditional guards correctly. Every access to an object’s
attributes needs to be catched as well. Also, the connection to source code should

42

3.1 Instrumentation

be kept as good as possible, so that we can later get to the corresponding source
location for every node of a Dynamic Object Process Graph.

Given these requirements, I chose to instrument C code on GAST level. A
GAST is a language-independent abstract syntax tree which is annotated with
additional semantic edges that describe the details of the original program [98]. A
front end for a given programming language converts the source code to this uni-
form representation. The instrumentation step then inserts additional nodes and
edges into the graph. It basically performs a sequence of graph transformations
on this intermediate representation. Finally, from the modified graph, source code
is generated, and this can be compiled and linked to an instrumented executable.
The top right corner of Figure 3.1 illustrates the approach.

Instrumentation on this representation has the advantage that it is similar
for different programming languages. The effort required to switch the lan-
guage mainly depends on the design of the GAST and on the constructs to be
instrumented. In my case, the GAST was already available: it is called IML in
Bauhaus [154]. Only the code generation step (unparser) was missing and had to
be implemented.

Although conceptually possible, instrumentation of Java code on this level did
not work out in practice. It turned out that the IML produced by the different
frontends was in fact not as similar as one would expect – probably mainly due to
the early stage of development of Bauhaus’ Java frontend. The incompleteness of
the Java IML at the time my work was done raised the necessity for an alternative
instrumentation technology for Java programs.

Java programs are compiled to byte code, which is then executed by a virtual
machine (JVM). This byte code is based on a small instruction set which abstracts
from different loop types, represents complex instructions as a sequence of basic
instructions, and so on [118]. This makes instrumentation on this level very conve-
nient: the code is already normalized, and there is no need for specially handling
complex expressions. Also, a system can be analyzed even when the source code
is not or not completely available. Furthermore, instrumenting byte code is very
fast and easy to do. For these reasons, I additionally implemented a byte code
based instrumentation for Java. The instrumentation is performed on Java byte
code using the ASM framework1. However, this also has some disadvantages:
instrumentation is only applicable for languages which are compiled to JVM byte
code, and the connection to source code is only available on source line level.

The next paragraphs describe the transformations that are necessary to instru-
ment code for DOPG extraction.

3.1.1 Normalizing Transformation

For the GAST based instrumentation, certain constructs are converted to a normal-
ized form first. This is done in order to avoid handling all the different possibilities
of specifying a loop separately. With this normalization, all those loops can later

1http://asm.objectweb.org/

43

Chapter 3 — Dynamic OPG Extraction

1 void reverse (Stack *from, Stack *to) {
2 while (!empty (from)) {
3 push (to, pop (from));
4 }
5 }

(a) Original code.

1 void reverse (Stack *from, Stack *to) {
2 L1:
3 if (!empty (from)) {
4 push (to, pop (from));
5 goto L1;
6 }
7 else {
8 }
9 }

(b) Normalized code.

Figure 3.2: The reversewhile loop before and after normalization.

be handled in a uniform way [98]. The information about the original type of con-
trol construct is lost, but this information is not important for the Object Process
Graph representation, and it is still available through the source code location.
A GAST like the IML already contains this normalization; it just has to be made
explicit (convert nodes to more general ones) to get the right results in the code
generation step.

All loops can be expressed in terms of if, goto, and label. Loops and also
switch/case statements are replaced by if/goto/label constructs. Occurences of
break and continue are replaced by gotos. Figure 3.2 shows the normalization
of the while loop from the example program.

3.1.2 Instrumenting Transformation

Based on the normalized representation of the GAST or on the bytecode, the
instrumenting transformation can be done. For the GAST, this is implemented by
a graph transformation, and for the bytecode, it is done by inserting additional
statements. Our goal is to gather the information necessary to reconstruct a
Dynamic Object Process Graph – the control flow graph from the perspective of
a given object. Therefore, we need to instrument all the constructs that influence
control flow: conditional and unconditional jumps, function calls, and returns.
Also, we need information about lifetimes of objects and about the points where
they are accessed.

44

3.1 Instrumentation

Event Arguments Description
create obj_id creation of new object
destroy obj_id object’s lifetime ends
read obj_id read access to an object’s memory
write obj_id write access to an object’s memory
branch_true true branch of a decision
branch_false false branch of a decision
label [name] real or artificial label
call func_id call site, calls a routine
entry func_id routine entry
return func_id return from a routine
exceptional_return func_id uncaught exception is rethrown
exception invocation of exception handler
new_thread new thread is created

Table 3.1: Overview of all traced event types, along with their arguments and
meaning.

Table 3.1 shows a summary of event types. Apart from one of these types, all
the inserted tracing statements require a unique location identifier (a label that
corresponds to a source code location). An additional argument can either be the
identifier of the object (usually its address) or the name of the function or label.
The following instrumentation locations are used to create trace events, which
means that events of different types are generated:

• Begin of object lifetime: create marks the begin of object lifetime. This
leads to a create node in the Object Process Graph. Different memory
allocation functions – such as malloc and calloc – are instrumented with
a create logging, as well as the points where local variables are declared. A
global variable’s lifetime begins when the program is started and ends with
the termination of the program.

• End of object lifetime: destroymarks the corresponding end of lifetime of
a heap variable, if it is explicitly destroyed in the code. It leads to a destroy
node in the OPG. For local variables, this is when the variable is removed
from the stack.

• Object access: read/write trace object memory or attribute access (see dis-
cussion below).

• Routine calls: call/entry/return trace routine calls at the call site, at the
called routine’s entry point, and at each return.

• Atomic method call: Calls of atomic methods (that is, the routines that
belong to the object) are handled as normal calls with an access to their

45

Chapter 3 — Dynamic OPG Extraction

respective memory area first, because they may be used in different contexts:
for objects of one class, the call may be atomic, but for others, it is probably
not. Atomic method calls are reduced in a later step.

• Loops: labels are needed to identify locations in the program that are
passed several times.

• Gotos: A label is inserted before the goto, and all labels are logged as well.

• Conditional control flow: branch_true/branch_false mark conditional
branches. The information is logged when one of the two possible branches
is entered. Branches which belong to the same decision are marked by a
common base identifier.

• Merge of control flow: Additional labels are inserted at merge of control
flow.

• Exceptions: The entry of every exception handler is marked with an excep-
tion event. Additionally, a try-catch block is added around each block that
can potentially throw an exception. The handler logs anexceptional_return
and rethrows the exception that was caught. Exception handling is discussed
in more detail below.

• Multithreading: Creation of a new thread is logged as a new_thread event.

Calls are logged before and after each call, using the same location identifier.
This simplifies subsequent graph construction. Additional location identifiers are
inserted at every merge of control flow and before jumps. This is necessary for
correct graph construction when different objects are accessed, which sometimes
are relevant and sometimes are not.

Parameter passing does not need to be logged, because we are interested in
them only when they are actually used, and usage is logged when read/write
occurs. Explicit goto target logging is also not needed, since the statement that is
executed after the goto is the logging of the target label.

Read/Write Instrumentation

An interesting part is the instrumentation of reads and writes. In C, we have to
deal with pointers, pointers to pointers, and the like. Therefore, we need to check
exactly which objects are being touched in an expression. As an example, take a
look at the following expression (with int **x):

(**x)++;

This expression leads to a read of object x to get the address of the address, a
read of object *x to get the address, a read of object **x to get the old value, the
addition of 1, and a write of the resulting value to object **x. Therefore, three

46

3.1 Instrumentation

different objects are involved in this expression: two with one read operation
each, and one with a read and a write operation. Each of these operations must be
logged with the respective address. Therefore, the instrumented code must look
like this:

log_read(&x), log_read(x), log_read(*x), log_write(*x), (**x)++;

In languages like C, pointers can be manipulated to point to any desired
memory location. Any pointer may potentially point anywhere. Therefore, all
read/write accesses through pointers are traced, no matter of what type the pointer
is. This has the consequence that the trace covers object accesses for all objects
that occur in a program run: all objects are traced at the same time.

Handling of Arrays and Records

An array or a record can be regarded as a single object, or each of its elements
can be regarded as an object. The dynamic analysis can trace at both levels, that
is, it is capable of tracing individual elements of an array or record as well as
summarizing the individual accesses as a partial read or write to the composite
structure as a whole. The simpler case is individual element tracking, and it
requires additional effort to track composite objects. In contrast to that, static
pointer analysis typically does not differentiate between individual elements of
an array because the distinction can be made statically only in trivial cases. This
is another advantage of dynamic analysis.

To reflect whole composite objects in the dynamic analysis, objects are identi-
fied by their base address. This means when some operation reads or writes to an
address that is in the address range of a known object, the address that is logged
by the instrumented program is the base address of the object. The instrumented
program keeps a mapping from address ranges to base addresses in order to be
able to resolve this. For heap variables, the size is given as a parameter to the
malloc function, and for local and global variables, sizeof delivers the variable’s
size based on the information about the type. In the remainder of this thesis, we
always regard composite objects, not individual elements, because these are more
interesting for the investigated applications (see Part III).

Exceptions

Languages like Java and C++ support exception handling, which leads to a
much more complicated control flow graph, since exceptions may potentially be
raised at many locations in the source code. Unchecked exceptions as in C++
or Java’s RuntimeException may be raised without even being declared in the
signature of a method. Related concepts that have a similar effect can also be
found in C (setjmp). Exceptions lead to branches without an explicit condition
and provide an alternative return mechanism for routines. Therefore, a routine in
the control flow graph no longer has a single entry and single exit node, but may

47

Chapter 3 — Dynamic OPG Extraction

1 void foo() {
2 double[] arr = ...
3 try {
4 . . . avg(arr) . . .
5 } catch (Exception ex) {
6 // Handler
7 . . .
8 }
9 }

10 double avg(double[] val) {
11 double sum = 0.0;
12 . . .
13 double res = sum/val.length;
14 . . .
15 return res;
16 }

(a) Code example.

...

...

...
...

......

Handler

return

enter

call

foo avg

(b) Corresponding DOPG.

Figure 3.3: Exception handling. Exceptional control flow is denoted by dashed
lines. When arr has length zero, avg is left by an exceptional return edge, and
the exception is caught by the exception handler within the calling method foo.
Otherwise, avg returns normally.

additionally have any number of exceptional exit nodes. Since control flow must
be reconstructed completely and correctly in the Dynamic Object Process Graphs,
special care has to be taken for exceptions.

For this purpose, there are two special types of edges for representation in the
Object Process Graph. These edges are taken when exceptions are raised. The
edges of the first type exception lead to the corresponding exception handler.
Edges of the other type exceptional_return are an alternative way of returning
from a routine. Figure 3.3 shows an example where both edge types are involved.

To catch the complete control flow with exceptions, it is necessary to create an
artificial exception handler that catches all exceptions around each method body.
Also, existing exception handlers have to be instrumented. The occurrence of the
exception is logged, and the exception is re-raised. This way, all exceptions and
exceptional method exits can be traced. Overall, with this approach, exceptions
can be dealt with in a straightforward way.

Instrumentation Example

Figure 3.4 shows the normalized and instrumented version of the reverse routine
as it was introduced in Figure 2.1. Also, the instrumented version of a possible
push implementation is shown. The push routine is important because it contains
the relevant events (reads and writes on *s1). Although push is an atomic routine,
it may as well be treated like a normal routine first; it will be replaced by an atomic

48

3.1 Instrumentation

1 void reverse (Stack *from, Stack *to) {
2 log_enter("reverse", "13");
3 L1: log_label("14.1");
4 if (log_read(&from, "14.2"), !empty (from)) {
5 log_branch_true("14.4T"), log_read(&to, "15.1"),
6 log_read(&from, "15.2"), push (to, pop (from));
7 log_label("16"), goto L1;
8 }
9 else log_branch_false("14.4F");
10 log_label("17.1");
11 log_return("reverse", "17.2");
12 }

13 void push(Stack *s, Item i) {
14 log_enter("push", "90");
15 log_read(&i, "91.1"), log_read(&s, "91.2"),
16 log_read(&s->c, "91.3"), log_read(&s, "91.4"),
17 log_read(&s->sp, "91.5"), log_read(&s, "91.6"),
18 log_write(s->c, "91.7"), log_write(s, "91.8"),
19 s->c[s->sp++] = i;
20 log_return("push", "92");
21 }

Figure 3.4: Normalized and instrumented code example; see Figure 2.1 for the
original source code of reverse. Begin-of-lifetime and call site logging have been
omitted for better readability.

call later on. It is necessary to do so when objects of more than one class are traced
in parallel (see discussion above).

Figure 3.6(a) shows an excerpt of a dynamic trace that has been generated by
the instrumented program. Each row in the trace contains the type of event, the
address or identifier of the concerned object, routine, or label, and the unique
location identifier. Location identifiers in this example represent the line number
of the original source code with an additional counter for disambiguation. (In the
implementation, they are simply numbered serially.)

In this example, instrumentation makes the program much larger. More than
20 statements are inserted for tracing, while the original program consists of
only very few statements. The exact amount depends on what we count as a
statement. One can imagine that this overhead will also be noticable when the
program is executed. The tracing and runtime overhead of this instrumentation
is investigated in Chapter 4.

49

Chapter 3 — Dynamic OPG Extraction

trace
trace
object

graph
raw

DOPG
filter

construction

graph

transform.

graph

Figure 3.5: From trace to DOPG.

3.2 Trace to Dynamic Object Process Graph

After creating an instrumented version of the subject system, we can execute it
and collect traces. These traces are then used as the basis for DOPG construction.
Figure 3.5 shows an overview of the construction process. The trace is first filtered
for a single object, which results in an object trace. From that, a “raw graph” is
constructed, which is then transformed to the DOPG. In the following, the details
of the individual steps are described.

3.2.1 Filtering

The traces that result from the described instrumentation contain information
about all objects that occurred in a program run. Therefore, as a first step, a filter
is applied that extracts the relevant information for only one object. The object trace
is extracted from the complete trace. This is done by checking inside each routine
invocation whether there is any read/write (or atomic method call) of the object.
Reads and writes to other objects are removed. If there is no read or write left,
the entire routine invocation is removed from the trace. This is done recursively.
Figure 3.6(a) shows an example trace, where events that are filtered out are shown
in gray.

The filter could actually be moved to the instrumentation phase so that only
those pieces of code are instrumented that deal with a certain type of expression, if
objects of that type were to be investigated. Instrumenting more selectively would
help to reduce the amount of data that is produced by the instrumented program
and may avoid unacceptable performance degradation. However, this selective
instrumentation could possibly reduce the accuracy and would question the ad-
vantages of dynamic analysis with respect to aliases and pointer arithmetics. The
instrumentation would have to rely on type information, and there are many ways
in C to circumvent the type system. The resulting insufficiencies of the necessary
static analysis would then lead to incomplete dynamic traces. In contrast, it is
safe to regard all parts of the program as potentially relevant for an object trace,
so this is what we stick to.

3.2.2 Raw Graph Construction

From the resulting object trace, a graph is generated. This graph is not yet an
OPG: it is a simple untyped, attributed, directed graph. Its schema is shown in
Figure 3.7. We call this intermediate graph a raw graph. Every location identifier
that occurs in the trace leads to a Node in the raw graph. Consequently, every

50

3.2 Trace to Dynamic Object Process Graph

enter reverse 13
label 14.1
read bfcbbb70 14.2
call 14.3
enter empty
...
return empty
call 14.3
branch-true 14.4T
read bfcbbb74 15.1
read bfcbbb70 15.2
call 15.3
enter pop
...
return pop
call 15.3
call 15.4
enter push 90
read bfcbbb64 91.1
read bfcbbb60 91.2
read 0804c068 91.3
read bfcbbb60 91.4
read 0804c068 91.5
read bfcbbb60 91.6
write 0804c068 91.7
write 0804c068 91.8
return push 92
call 15.4
label 16
label 14.1
read bfcbbb70 14.2
call 14.3
enter empty
...
return empty
call 14.3
branch-false 14.4F
label 17.1
return reverse 17.2

(a) Trace excerpt. Irrelevant
events are shown in gray.

true

push

entry

read 91.3

read 91.5

return

write 91.8

write 91.7

label 16

call 15.4

entry

label 14.1

false

return

label 17.1

reverse

(b) Raw object process subgraph.

push

entry

t

label 16

return

f

label 17.1

label 14.1

reverse

(c) Close to completion.

Figure 3.6: Example trace excerpt for the call of routine reverse from Figure 2.1
and intermediate Object Process Graphs for object *s1.

51

Chapter 3 — Dynamic OPG Extraction

Node

type : String
name : Identifier
sloc : SLoc succs

0..*

Figure 3.7: Raw graph meta-model.

Node corresponds to one location in the instrumented code. A Node has several
attributes. The type attribute is the type of event that has been recorded, the
optional name is the name of a routine. A Node also knows its source location
(sloc). Edges are inserted as they are induced by the order of location identifiers.
The algorithm in Figure 3.8 shows the basic idea. For the ease of understanding,
the creation of CallPairNodes (which do not directly result from an event) is
not shown in the algorithm; it is realized by keeping track of the call stack and
identifying them by the combination of their Call- and EntryNode. The resulting
graph contains all necessary information for the transformation to the DOPG, but
also a lot of additional information which is removed in the next step.

Input : an object trace
Output: the corresponding raw graph

G = (V,E, s, t, l, a)
(see Section 2.2)

create new node st
a(st, type) := Start;
V := {st}; E := ∅; p := st
foreach object trace event t do

n := get_or_create_node (t)
V := V ∪ {n}
if @e ∈ E : s(e) = p ∧ t(e) = n then

create new edge e
s(e) := p; t(e) := n
E := E ∪ {e}

p := n

Figure 3.8: Raw graph construction; get_or_create_node(t) yields a graph node
for event t which is based on t’s location identifier. The class l and attributes a are
set accordingly. The corresponding node is returned if it exists, or a new node
for t is created otherwise.

The tracing approach that has been described so far creates raw graphs offline.
This means that during program execution, the events are just written to a trace
file, and only after the program has terminated, further processing is performed.
Yet, the graphs can as well be created online to avoid the generation of huge trace
files. In particular, construction of the raw graph can be done online, and the graph

52

3.2 Trace to Dynamic Object Process Graph

transformations can be done after the program has terminated. This approach is
described in detail in Chapter 4. This way, also different raw graphs from different
program runs can be combined before applying the transformations.

Merging multiple graphs that share the same static allocation point is also
possible with the offline approach: you simply start raw graph construction with
an existing graph instead of the empty graph. This merging step may help to get
a more complete Dynamic Object Process Graph and is necessary for comparison
to static OPG extraction, which only delivers this kind of merged graphs.

3.2.3 Graph Transformation

A sequence of simplifying transformations is then applied to the raw graph. The
nodes and edges are successively transformed to nodes and edges of the OPG
meta-model. For this transformation, a combined meta-model is used: the Node
class from the OPG meta-model is temporarily replaced by the raw graph Node,
including its attributes and association.

In the following, I use the single-pushout graph transformation approach to
describe the necessary transformations. A short introduction to the necessary
graph transformation basics and definitions can be found in Appendix B. Basically,
the single-pushout approach finds a subgraph with a structure as shown on the
left hand side of a rule and replaces it with the right hand side. The replacement
is done using the gluing graph that defines reference points (shown in gray in
the rules). All dangling edges are simply removed.2 Additionally, we use an
extension for expressing negative application conditions as introduced by Habel
et al. [66]: nodes and edges inside dotted borders demark application conditions.
Such nodes and edges must exist for the transformation to be applicable, but are
not relevant for the transformation step. If the dotted area is crossed out, such
nodes and edges must not exist.

The following rules are applied:

1. T1 (Figure 3.9(a)): merge all return nodes for the same routine. (This
transformation may be left out if returns from different source locations
shall be distinguished.)

2. T2 (Figure 3.9(b)): replace a pair of branch_true and branch_false nodes
with a true and a false edge and insert a DecisionNode.

3. T3a/b (Figures 3.9(c) and 3.9(d)): remove unnecessary label nodes, that is, label
nodes that have only one successor. The graph transformation is performed
in two steps to cover the case that a label node has more than one incoming
edge. This is similar for some others of these rules.

4. T4a/b (Figures 3.9(e) and 3.9(f)): remove branch nodes that are the only
successor of a node. We cannot know in advance if both possible values

2This is different in the double-pushout approach, where dangling edges are not allowed to
occur.

53

Chapter 3 — Dynamic OPG Extraction

a : Node b : Node

c : Node

type=Return

d/e : Node

a : Node b : Node

type=Return

e : Node
type=Return

d : Node

c : Node
type=CallPair

(a) T1: Merge return nodes of same routine.

a : Node

type = True type = False

a : Node

f : Deci−
sionNode

falsetrue

b : Node c : Node b : Node c : Node

d : Node e : Node

(b) T2: Transform branch nodes to edges.

type = Label

b : Node

c : Node

a : Node

type = Label

b : Node

c : Node

a : Node

d : Node

(c) T3a: Bypass unnecessary label.

d : Node

c : Node a : Node
type = Label

a : Node

b : Node

(d) T3b: Remove unnecessary label.

a : Node

type = True

d : Node a : Node

b : Node b : Node

c : Node

(e) T4a: Remove single branch node.

a : Noded : Node a : Node

b : Node b : Node

c : Node
type = False

(f) T4b: Remove single branch node.

Figure 3.9: Transformations from Raw Graph to DOPG.

54

3.2 Trace to Dynamic Object Process Graph

sionNode

true false

c : Node

d : Deci−

a : Node

sionNode

true false

c : Node

d : Deci−

a : Node

(a) T5a: Bypass unnecessary decision node.

a : Node
sionNode

true false

c : Node

a : Node

b : Deci−

(b) T5b: Remove unnecessary decision
node.

sionNode

c : Node

true false

a : Node

b : Deci−

sionNode

c : Node

true false

a : Node

b : Deci−

(c) T6a: Bypass unnecessary decision
node.

sionNode

true false

a : Node

b : Deci−

c : Node

a : Node

(d) T6b: Remove unnecessary deci-
sion node.

call return

Node Nodetype=Entry type=Return

type=CallPair

type=Call

a : Node

b : Node

c : Node d : Node

Node
a : Call−

b : Call−
PairNode

c : Entry− d : Return−

(e) T8: Transform call/entry/return. Note that only labels are
changed – the nodes and edges remain the same.

a : Node

type=Excpt.

a : Node

exceptionc : Node

b : Node

b : Node

(f) T9: Transform exception node.

Figure 3.10: Transformations from Raw Graph to DOPG (continued).

55

Chapter 3 — Dynamic OPG Extraction

of a decision will be encountered, therefore such constructs appear in the
raw graph.

5. T5a/b (Figures 3.10(a) and 3.10(b)): remove local loops, that is, edges that
lead from a decision node to itself. Such edges may appear as a result from
other transformations. Note that the corresponding rules with exchanged
false/true edge labels also have to be considered.

6. T6a/b (Figures 3.10(c) and 3.10(d)): remove decision nodes for which both
successors are identical.

7. T7 (Figure 3.11): remove subgraphs that are not relevant for control flow.
Control dependency analysis is performed to find out which decision nodes
are really relevant. The algorithm is provided in Figure 3.11 and described in
detail below. Note that T5a/b and T6a/b are just special cases of this rule, which
have been added as an optimization for frequently occuring constructs.

8. T8 (Figure 3.10(e)): replace a combination of call/entry/return type raw nodes
by the corresponding OPG node and edge types. This means in fact just
relabelling the nodes and edges.

9. T9 (Figure 3.10(f) shows a representative): transform exception nodes to
exception edges. The corresponding transformation is done for raw graph
nodes of type “new_thread”. Each remaining raw graph node is transformed
to the OPG node of the specified type.

10. T10: Remove bodies of atomic methods. This transformation removes all
nodes between EntryNode and ReturnNode of an atomic method. The
remaining CallNode is then transformed to an AtomicCallNode.

The order of the rules is partly important. For example, return nodes have to
be unified before the call/entry/return construct can be replaced, and the bypass-
ing transformation T3a has to be done before the removing transformation T3b is
applicable. Therefore, the order has to be obeyed.

The repeated application of these transformations terminates because in every
transformation, either nodes or edges are removed, or edges are redirected in
a way that allows elimination of nodes in the next step, or nodes or edges are
relabelled (with reversal not possible). The completeness of the rules can be
concluded from the structure of the raw graph. By construction, this structure
is in fact more restricted than the raw graph’s meta-model may suggest. For
example, only “True” and “False” nodes may occur in a branch. Such restrictions
eliminate a lot of cases that otherwise would have to be considered in the rules.

After termination, we remove those nodes and edges that are not reachable
from the allocation point – in particular, the path from program start to the alloca-
tion point. Parts of the graph that do not have a path to an operation on the object
are removed as well (this is called “Object Process Graph slicing” by Eisenbarth et
al. [46]). This way, the graph is further reduced to the really relevant information.
The result is a Dynamic Object Process Graph.

56

3.2 Trace to Dynamic Object Process Graph

foreach routine r, represented by a subgraph H ⊆ G do
C := {n ∈ VH | a(n, type) = ”Decision”}
while ∃c ∈ C, n ∈ VH \ C: (n is control dependent of c) do

C := C \ c
P := {n ∈ VH \ C | ∃e ∈ EH : s(e) = n, t(e) ∈ C}
Q := {n ∈ VH \ C | ∃e ∈ EH : s(e) ∈ C, t(e) = n}
foreach (p, q) ∈ P ×Q do

VR := C ∪ {p, q}
while ∃e ∈ EH : (s(e) < VR ∧ t(e) ∈ VR ∧ t(e) , q) ∨

(s(e) ∈ VR ∧ t(e) < VR ∧ s(e) , p) do
VR := VR \ {s(e), t(e)}

ER := {e ∈ EH | s(e) ∈ VR ∧ t(e) ∈ VR}

if ER , ∅ then
perform the graph transformation:
(VR,ER, . . .) ⊇ ({p, q}, ∅, . . .) ⊆ ({p, q}, {e}, {(e 7→ p)}, {(e 7→ q), . . .})

Figure 3.11: T7: Elimination of nodes which are irrelevant for control flow.

C
P

Q

q

p

Figure 3.12: Illustration of the Algorithm from Figure 3.11. P, Q and C have been
calculated, and (p, q) has been selected. The dashed arrows demark edges that
satisfy the condition for e in line 9, because they cross the boundaries of C (i. e.,
VR really).

57

Chapter 3 — Dynamic OPG Extraction

Removing control-flow irrelevant subgraphs

The raw graph may contain nodes that are completely irrelevant for control flow.
In particular, it may contain subgraphs that consist of decision nodes only and
have only one entry and one exit node. Two examples for such subgraphs are
shown in Figure 3.12. The left subgraph (within C) consists of four decision nodes,
the right one of two such nodes. Each of these subgraphs can be removed from
the overall graph and replaced by a single edge without loss of information.

The algorithm for identifying subgraphs of this kind is shown in Figure 3.11.
It is based on control dependencies, which can be calculated based on post-
dominance information [53]. The algorithm starts by identifying all decision
nodes on which no other non-decision type node is control dependent. It puts
those nodes into set C. It then collects all nodes that either lead into one of the
nodes in C (in set P) or that are reachable from one of C’s nodes (set Q). Then,
for each pair (p, q) ∈ P ×Q, it collects all nodes and edges that connect p and q by
successively removing nodes that are connected to other nodes outside C ∪ {p, q}
(in VR and ER). If any edges are left, this means that a construct of the desired
type has been found, and it is replaced by a single edge from p to q.

In the example from Figure 3.12, the sets P, Q, and C have been identified.
Nodes p and q have been chosen, so the next step is to eliminate those nodes that
are not connected to p or q. In this case, the nodes of the right subgraph in C will
be removed from C. The 4 nodes and 9 edges of the left subgraph will then be
removed and replaced by a single edge from p to q. The other subgraph of C will
be replaced in a subsequent iteration.

Tracing example (continued)

Figure 3.6(b) shows the raw object process subgraph as reconstructed from the
trace in Figure 3.6(a) using the algorithm in Figure 3.8. Figure 3.6(c) shows the next
step: the true and false nodes have been transformed to edges, and the call of
the atomic push routine has been replaced by an atomic_call. Then, unnecessary
labelnodes are removed. The result of application of this method on the complete
example is the final Object Process Graph as shown in Figure 3.13(a). This graph
is the same that would be derived by static analysis. However, we only get this
result from dynamic analysis if *s2 contains at least one element in our program
runs.

Figure 3.13(b) shows a possible DOPG for the trace with empty *s2. The
result depends on the behavior of routine popwhen the stack is empty. When pop
raises some kind of exception, the program may terminate immediately, leaving
out the empty call. This small example illustrates how the completeness of the
dynamically created Object Process Graph depends on the code coverage of the
used test cases.

58

3.3 Additional Considerations

F

T

F

T

entry

return

reverse

callcall

F

T

main

push(to)

s1 = init()

pop(s1)

empty(s1)

(a) !empty(s2)

main

pop(s1)

empty(s1)

s1 = init()

(b) empty(s2)

Figure 3.13: Final DOPG for *s1 for the example. Only when *s2 contains at
least one element, the result is identical to the statically extracted Object Process
Graph. Otherwise, the call of reverse is not relevant.

3.3 Additional Considerations

The description of dynamic creation of Object Process Graphs in the previous
sections was mostly based on the C language, although the concept of exceptions
(from C++ and Java) and Java bytecode instrumentation was covered as well.
However, when analyzing other languages, special language features, or special
classes of applications, additional issues have to be considered.

Object-oriented language features. Object-oriented languages add classes,
objects, and methods. Method and constructor calls are already covered by the
described instrumentation technique and do not make any extension necessary.
With concepts such as overloading, we just have to take care about unique method
signatures (mangled names). Since method entries are noticed, this tells us which
method has really been entered with dynamic binding. When investigating objects
of a certain class that are allocated at different points, the concept of inheritance
gives us the additional choice of also taking instances of its subclasses into account
or not. This should usually be done because subclasses are just specializations of
the investigated class: they have to adhere to Liskov’s substitution principle [119],
which states that any instance of a given class (or type) can be replaced with
an instance of one of its subclasses (subtypes) without changing the program’s
behavior.

Multithreading. In contrast to C, multithreading is very easy to do in Java.
Also, even without explicitly starting new threads, any Java program has several
threads running in parallel. Apart from the main thread, there is at least the
garbage collector’s thread, and when there is a GUI, there also is an AWT thread.
Therefore, a dynamic analysis on Java applications must take care of multithread-
ing. This is realized by writing one trace file per thread, which turns out to be

59

Chapter 3 — Dynamic OPG Extraction

faster than additionally writing a thread identifier into a single trace file. The
inter-thread event order does not need to be considered, since the exact timing
information gets lost in the OPG representation anyway. Tracing must be syn-
chronized to work correctly, which additionally slows it down. In the OPG, the
creation of a new thread is represented by inter-thread edges (new_thread event).
These edges lead from the node that starts the new thread to the first node (thread-
root node) that is executed by the new thread. This idea is based on the interthread
control flow graph by Choi et al. [28].

C++ supports templates. This gives us the choice of instrumenting the tem-
plate only (once) or instrumenting every instance of a template separately. Since
control flow is statically identical in every instance, it would be reasonable to
instrument only the template. Templates are an interesting subject for analysis,
since reusable data structures should adhere a certain protocol as well. However,
C++ programs will not be investigated in more detail in this thesis, because the
C++ GAST was also not complete (specially with respect to templates) at the time
these studies were performed.

System libraries/classes. Library functions cannot easily be instrumented for
C code, and the same is true for Java API classes. Parts of the API appear to
be protected from being modified. The Java Virtual Machine produces all kinds
of error messages when trying to modify certain classes. Therefore, I did not
instrument system libraries or classes belonging to the standard Java runtime
environment at all. Consequences arising from this are discussed in the next
paragraph (“Callbacks”).

Callbacks. Callbacks are very important for applications that are based on a
graphical user interface (GUI). For example, most event handling in Java’s GUI
framework (AWT/Swing) is done through callbacks. These are usually realized
by providing an object of a class that implements a given interface. This leads
to calls of application code from system routines – and since system routines
cannot be completely traced, this causes incomplete and potentially misleading
traces. Therefore, analysis must be robust against such effects. To achieve this,
an artificial call node is created whenever there is an entry node without a call
node. This correction can be integrated into the filtering step (see Section 3.2.1).

Special Java Issues

Instrumentation of Java byte code raises a few additional issues.
Object addresses. Addresses of objects are not accessible in Java. This raises

the question of how to get a unique identifier of an object, which is necessary for a
full textual trace. Fortunately, it turns out that using theSystem.identityHashCode()
function delivers sufficiently disjunctive values.

Accessing new objects. New objects may only be accessed after the constructor
of the root class java.lang.Objecthas been invoked. Before that, it is not possible
to access the object. Therefore, we must distinguish between the point of creation
of the object and the point where the object is accessible for the first time. New
objects can be identified only at the latter point.

60

3.4 Summary

Reflection. In Java, classes and their methods can be accessed dynamically.
Reflection allows to access a class based on its name, create instances of it, and
call its methods. Since reflection is widely used, this technique also has to be
considered. Byte code instrumentation can recognize calls to the reflection API
and handle them as if the destination object was directly used.

3.4 Summary

This chapter introduced a graph transformation based technique for extracting
OPGs by means of dynamic analysis. The instrumentation is done on GAST
level by graph transformations. An alternative is to instrument on byte code
level. The traces that result from executing the instrumented program are first
transformed to a raw graph, which is then converted to a DOPG by a sequence
of graph transformations. The approach is basically language-independent and
was implemented for C and Java. It considers techniques such as multithreading
and exception handling.

With this approach, we can generate Dynamic Object Process Graphs which
describe a set of dynamic traces for a given program. Dynamic trace extraction
is an enabling technique. Similar to program slicing [208], dynamic trace extrac-
tion slices the control flow graph so that only those statements are kept that are
relevant for a particular aspect. In program slicing, relevance means control and
data dependency. For dynamic trace extraction, the flow of operations and their
conditions are of relevance.

However, the approach has one problem that every dynamic analysis faces: it
generates huge trace files. Due to the necessary intense instrumentation, we also
have to suspect a considerable runtime overhead. This issue is addressed in the
next chapter.

61

Chapter 4

Online DOPG Extraction

The dynamic OPG extraction algorithm as described in the previous chapter
showed promising results in a first prototype implementation (the corresponding
case studies are presented in Chapter 6). However, it turned out to be too slow to
be applicable in practice. Therefore, the runtime overhead and trace size problem
has to be attacked in order to make the approach usable. In this chapter, I introduce
optimizations to the technique and an extension which attacks this problem and
even enables additional applications. A case study illustrates that this technique
is applicable even for larger and interactive systems.

4.1 Problem Characterization

The basic dynamic OPG extraction approach from the last chapter involves several
resource intensive steps:

• Traces become very large quickly, because a lot of information has to be
recorded. For example, for each condition node of the control flow graph
that is passed during execution, we have to remember which branch has been
taken. Tracing produces hundreds of megabytes of data within seconds.
This implies a high I/O overhead.

• Individual object traces have to be extracted, and only then, the Dynamic
Object Process Graphs can be constructed from that. In this step, the trace
file has to be read again and again (for each individual object). Due to the
size of the trace, this also takes quite some time (see Section 4.3).

• During the construction of the DOPG for each object, the object traces have
to be read again. They contain a lot of redundant information, caused by
cycles and repeated function calls.

These points restrict the applicability of DOPG extraction in practice, because
they slow down the entire application to a level which is not acceptable in many
cases. Therefore, a way to avoid them is needed.

63

Chapter 4 — Online DOPG Extraction

Optimizations

A possible solution to the amount-of-data problem is instrumenting only those
locations that we know can possibly be relevant for a given object. However, as
discussed in Chapter 3, this would have to be decided statically, which would
partly eliminate the advantages of dynamic analysis.

Another solution is to compress the trace data. Reiss et al. [157] list a lot of
possibilities to compress a dynamic trace. The following practices for compressing
DOPG traces are used:

• Use the shortest possible identifiers for locations,

• use numbers to identify method signatures, since those can be quite long for
Java programs (including package and parameters),

• use single characters to distinguish the node type.

These optimizations reduce the average amount of data required to store an
event to 12 bytes. Compared to the original trace file format (see Figure 3.6(a),
the runtime reduction is only about 14% for the case studies from Section 4.3,
while trace files could be compressed to 15% of their original size. The amount of
data could be reduced even further by using a binary format or applying online
compression to the data. However, this would increase the runtime overhead and
reduce readability of the trace file.

4.2 Online Construction

A better approach for tackling the trace size problem is to limit the trace to objects
of the relevant class dynamically. The relevant class is the class whose instances
the analyst is interested in, that is, for whose instances he wants to extract DOPGs.
The relevant class is a characterization of all the objects of interest.

After returning from a called routine, it is known if this invocation of the
routine was relevant for the regarded object or not. If the call was relevant, the
trace of the called routine has to be remembered, else it can be discarded. The
problem with this approach is that large amounts of trace data – in the extreme,
the entire trace – have to be remembered before it can be decided if that data is
needed or not, which can easily fill up all memory.

Therefore, this approach has to be complemented by a different representation
of trace data. Loops have to be represented in an efficient way. Since we are
interested in the raw graphs as described in Section 3.2.2 anyway, why not directly
construct those graphs online instead of remembering all the trace events? The
number of nodes in this graph is limited by the number of nodes in the CFG, while
the number of trace events is not limited. Therefore, it is possible to remember
executed parts of the graph temporarily. Only when the program terminates, the
resulting raw graphs need to be written to file, which eliminates the I/O overhead

64

4.2 Online Construction

graph
raw

graph
raw

program
running

DOPG
graph

transform.graph
rawevents

trace
graph constr.

with filter

Figure 4.1: Online construction of a Dynamic Object Process Graph. In this
approach, the trace is not explicitly represented. Dashed rectangles represent a
process.

during execution. By allowing to just record the graphs for objects of certain
classes, the number of graphs that must be constructed simultaneously is limited
as well, which prevents explosion of additionally required memory. However,
this approach is probably not adequate when lots of instances of a class are to be
traced.

The algorithm basically works as follows:

• As events occur, construct the corresponding graph, as described in Fig-
ure 3.8. When a routine is left, eliminate that call from the graph again. This
way, always keep only all routines of the current call stack in this graph. It
represents the path from the main routine to the current node. Let us call
this graph the “current stack graph”. It will be used to indicate the current
program location when a new object is created.

• Whenever a new object of a relevant class is instantiated, create a copy of
the current stack graph for this object.

• Apply each other event (that is, each event other than instantiation) to the
current stack graph and to all copies. This means that an edge is inserted
between the previously visited node and the node that corresponds to the
event’s unique source location. Events that relate to one particular relevant
object are only added to this object’s graph.

For the copies, remove routine calls (the same way as for the construction
of the current stack graph) only if the routine invocation is not relevant for
the object of this copy. This means there must be at least one relevant node
within the called routine in order to keep it. As construction goes on, this
will discriminate the different graphs from each other.

The overall process is sketched in Figure 4.1. The trace itself does not have an
explicit representation. Events are directly integrated into the raw graphs (one for
each object of interest). The basic instrumentation and the transformation from
raw graph to Dynamic Object Process Graph remains the same as in the basic
approach from Chapter 3.

Data structures. To allow an efficient implementation of this idea, I decided
to have just one graph that contains all nodes and edges that were visited in
the entire program run. The raw graphs for our objects and the current stack
graph are then just views (that is, subgraphs, called GraphViews) of the complete

65

Chapter 4 — Online DOPG Extraction

Node

type : String
id : SLoc

Edge

id : long

GraphView

obj : Object
allocId : SLoc

ThreadInfo

prev_node

new_edges

0..*

RoutineInfo

used : Boolean

entry_pred

routine_stack

0..*

new_edges

0..*

thread_infos

1..*

succs

Graph
nodes

0..*

0..*

1 1

0..*

edges

Figure 4.2: Raw graph online construction meta-model.

graph. There will not be any nodes without edges, so it is sufficient to keep
track of the edges only. This can be done very efficiently by using running edge
numbers and a bit set implementation. Multithreading must be considered in the
data structures because multiple threads may be constructing the same graph at
different locations at the same time. The overall data structures used are shown
in Figure 4.2 and explained in Table 4.1. Additionally, a mapping from objects to
GraphViews has to be kept.

Algorithm. With these data structures, the algorithm in Figures 4.3 and 4.4
can be applied for raw graph construction. Figure 4.3 shows the main loop for
event processing. New GraphViews, based on the current stack GraphView, are
created as new relevant objects (that is, instances of the relevant class) are created.
For each unique instrumentation location id that occurs in an event, a node is
created, and edges corresponding to their sequence are added to the different
GraphViews. Special care must be taken of operations on relevant objects, which
are only applied to the GraphView that belongs to that object.

Figure 4.4 describes in detail how processing a node updates a GraphView.
Note that this processing may lead to preliminary or final addition of nodes and
edges, as well as removal of preliminarily added elements. The latter is the case
when a return event has been received, and the routine invocation turns out to
be irrelevant. To make sure that the necessary information is available, a new
RoutineInfo is created on routine entry. This new object collects the necessary in-
formation for the entered routine. Edges that are not yet visible in this GraphView
are preliminarily added, until it is known whether the routine invocation is rele-
vant or not. Only when it turns out to be relevant, those nodes are permanently
added to the GraphView. While RoutineInfo.new_edges keeps track of edges that

66

4.2 Online Construction

Class Meaning
Graph Raw graph containing one node for each instrumented location

that has been visited in this program run. Edges are directly kept
within the nodes.

Node A raw graph node, along with a type (see 3.1.2), a unique source
location identifier (id), and edges to the node’s successors (succs).

Edge A conceptual association class. In our implementation, an edge
is not represented by an instance, but by a unique id. This means
that objects do not hold references to instances of this class, but
rather the corresponding id.

GraphView This class represents a subgraph of the Graph. A subgraph is de-
fined by the set of contained edges – the attached nodes implicitly
belong to the subgraph as well. There is one GraphView instance
for each object which is being traced. Additional information
about the current state of affairs is kept in thread_info for each
thread separately.

ThreadInfo There is one instance of this class for each thread. It holds in-
formation about the current call stack (routine_stack), along with
information about all edges which have so far only been prelim-
inarily added by this thread (new_edges). It also contains the
node which was last visited by this thread (prev_node).

RoutineInfo This class holds information about the currently executed rou-
tine. One such instance exists for each routine on the call stack
(per thread). It remembers the call site (entry_pred, copied from
prev_node) and the set of edges which have been preliminarily
added to the graph within this routine (new_edges). The used
flag becomes true when the function has been recognized to be
relevant. When the routine is left and the flag still not set, the
routine is not relevant for this invocation.

Table 4.1: Meta-model classes and attributes explained.

are not contained in the GraphView and that have not been preliminarily added
in one of the calling routines, ThreadInfo.new_edges contains all edges that have
been preliminarily added in any routine on the call stack. This allows a very fast
check and update of these sets.

Figure 4.5 shows an example in the process of constructing a GraphView. On
the left, edges have been preliminarily added to both new_edges sets for each
routine (gray). Then, an operation on the GraphView’s object is encountered
(black circle). This leads to setting the used flag, which in turn has the effect
that the RoutineInfo.new_edges are permanently (black) added to the GraphView
when the routine is left (return node). Because the used flag is propagated up the
call stack, all callers’ edges will also be permanently added to the GraphView’s
edges set later. If there had not been a relevant node within the routine, all edges
from RoutineInfo.new_edgeswould have been removed from the edges set again.

67

Chapter 4 — Online DOPG Extraction

Start with an empty GraphView (“current stack GraphView”) and an empty
graph.

foreach incoming event do

if event is the creation of an object of the relevant class then
create a deep copy of the current stack GraphView for this object.

n = get_or_create_node(event)

if event is an operation on a relevant object (including creation of the
object) then

processNode(n, GraphView for this object)
else

foreach GraphView g do
processNode(n, g)

Figure 4.3: Main algorithm.

4.3 Case Study: Tracing Overhead Online/Offline

In the following case study, the overhead that is imposed by DOPG instrumenta-
tion is measured, and this overhead is compared for online and offline construction
of raw graphs. The raw graph is the common data structure that is produced by
both approaches, so further processing is identical. The case study examines the
instrumentation overhead in terms of running time and the number of trace events
that occur within each program run. Also, the size of the resulting trace files is
measured for the offline approach. The goal is to find out whether construction
of Dynamic Object Process Graphs is feasible using these methods.

4.3.1 Subject Systems and Procedure

As subject systems, several Java programs of different size are investigated, tracing
for potentially representative objects within typical use cases. Table 4.2 shows
some size measures of the investigated systems.

ArgoUML1 is a widely-used open-source UML modeling tool which supports
all standard UML 1.4 diagrams. Graph models for the different diagrams must be
a central concern for this tool. Therefore, as a first use case, the construction of a
class diagram with ClassDiagramGraphModel as the relevant class is used. A class
diagram for the observer pattern is drawn, consisting of four classes, one note,
one aggregation, two inheritance relations, and six methods. The result is saved,
and the application is quit. The second use case is the construction of a sequence
diagram (relevant class: SequenceDiagramGraphModel). The constructed diagram
consists of three actors and three synchronous interactions. The result is also

1http://argouml.tigris.org/

68

4.3 Case Study: Tracing Overhead Online/Offline

Input: node n that shall be processed, GraphView gv to be updated

if ThreadInfos contains a ThreadInfo for the current thread then
use this ThreadInfo ti

else
ti = new ThreadInfo()
add ti to ThreadInfos

if n.type = "entry" then
ri := new RoutineInfo()
ri.entry_pred := ti.prev_node
ti.routine_stack.push (ri)
ri.used := false

else
ri := ti.routine_stack.top()

Edge e := (ti.prev_node, n)
if e < gv.edges and e < ti.new_edges then

ti.new_edges := ti.new_edges ∪{e}
ri.new_edges := ri.new_edges ∪{e}

if n.type = "return" or n.type = "exceptional_return" then
riex := ti.routine_stack.pop()
ri := ti.routine_stack.top()
ti.new_edges := ti.new_edges \ riex.new_edges

if riex.used then
gv.edges := gv.edges ∪ riex.new_edges

else
n := riex.entry_pred

ri.used := ri.used or riex.used

else if n.type = "operation" and operation relates to gv.obj then
ri.used := true

ti.prev_node := n

Figure 4.4: processNode: Updating a GraphView.

entry entry

return

entry entry

return

Figure 4.5: Example: A relevant routine invocation leads to permanent addition
of edges to the GraphView.

69

Chapter 4 — Online DOPG Extraction

ArgoUML J JHotDraw ANTLR
LOC [K] 264 158 71 53
SLOC [K] 131 130 28 38
#Classes 4,285 1,277 398 145
#Methods 32,263 9,081 3,422 1,696
Bytecode [KB] 17,943 5,782 1,650 1,216
Instrumented [KB] 25,133 9,670 2,258 2,392
Ratio [%] +40.0 +67.3 +36.9 +96.7
Instr. Time [s] 13.9 7.1 2.5 9.1
Inserted Calls 436,766 197,516 41,037 41,652

Table 4.2: Subject system properties and static instrumentation overhead. Instru-
mented byte code size, Ratio of instrumented byte code size to original bytecode
size, and CPU Time needed for instrumentation.

saved. In the third use test case, we are interested in objects of the Project class.
The actions performed include loading existing projects and creating new projects.

J2 is a text editor with different editing modes, XML support, compiler/debug-
ger, mail client and lisp interpreter. Classes related to the mail client feature were
left out from instrumentation for this experiment3. The first use case concerns the
Editor class, which appears to be the central class of J. We start J, load files, create
a new file, copy and paste, save a file, close files, and exit. In the second use case,
we look at the JavaMode class, which is responsible for Java specific behavior. We
load a Java file, use the Java tree display to jump to different methods, and fold
and unfold methods (that is, hide/show the body).

JHotDraw4 is a Java GUI framework for graphical applications. It was origi-
nally written as an example for the application of design patterns, but is now used
in many applications as well. The tests are performed using the sample JavaDraw
application that comes with JHotDraw. As the first use case, the ZoomDrawingView
class – the view that contains all the visible objects that are drawn – is investigated.
The use case consists of creating a new drawing, drawing eight rectangles, starting
the animation for 5 seconds, stopping it again, then zooming into the image, and
exiting. The second use case traces for instances of QuadTree, which is used to
partition a drawing. A new drawing is created, eight rectangles are drawn, all
eight rectangles are deleted again one after the other, and the application is quit.

ANTLR5 is a parser generator which is also written in Java. In this study, it
serves as a representative for batch tools – all the previously introduced tools are
interactive. The test case is the creation of a parser according to the Java grammar
as supplied as an example with ANTLR. Two different classes are regarded: one

2http://armedbear-j.sourceforge.net/
3This was done to circumvent problems with the ASM framework that occurred for some

classes of the mail part which contained abnormal byte code. However, sending emails is not a
basic functionality for a text editor, so this should not be a severe restriction.

4http://www.jhotdraw.org/
5http://www.antlr.org/

70

4.3 Case Study: Tracing Overhead Online/Offline

number of mio events offl. trace
Test case threads obj. offline online size [MB]
ArgoUML:
– ClassDiag. 12 1 23.2 25.8 248.3
– SequenceDiag. 9 1 12.2 13.7 130.7
– Project 10 2 12.7 11.3 119.0
J:
– Editor 12 1 18.7 21.2 191.4
– JavaMode 20 1 9.3 8.1 82.0
JHotDraw:
– ZoomDrawView 4 1 1.1 1.4 11.5
– QuadTree 3 10 0.9 0.9 9.9
ANTLR:
– Grammar 1 2 85.7 91.5 809.9
– DFA 1 75 85.7 91.5 809.1

Table 4.3: Measurement of collected data size. Note that after-call is not an event
for offline tracing.

is the Grammar class, which represents a grammar in memory, the other one the
DFA class, which implements a deterministic finite state automaton.

General Procedure. For the interactive use cases, it is important to always
execute user commands in the same order with similar timing. In order to limit
the influence of such timing differences, each use case is executed at least three
times for each of the different versions. The three versions consist of the unmod-
ified code (original), the instrumented code with trace logging (offline), and the
instrumented code with raw graph construction (online). Then, the average of
these runs is taken. Also, execution times are measured in terms of CPU time
instead of elapsed real time to further minimize those effects. All use cases and
time measurements were performed on a 3 GHz Pentium IV machine.

4.3.2 Results

Static instrumentation overhead. The bottom part of Table 4.2 provides an
overview of the cost for doing the instrumentation. Byte code manipulation
is the same for both the online and offline approach, so this does not need to be
distinguished. The implementations only differ in what happens in the functions
that are called by the instrumented code.

Instrumentation is done very fast. Up to 1.3 MB of byte code are instrumented
per second, or up to 2,300 methods per second. The number of inserted calls to
tracing routines averages between 100 and 300 per class. This increases byte code
size by up to 97%, which is mainly due to the location identification strings that
have to be stored for each event location.

71

Chapter 4 — Online DOPG Extraction

CPU time [s]
Test case original offline +filter =sum online
ArgoUML:
– ClassDiag. 19.0 130.4 29.8 160.2 155.0
– SequenceDiag. 16.2 59.4 15.8 75.2 62.8
– Project 12.6 46.0 29.2 75.2 43.0
J:
– Editor 3.7 81.3 28.5 109.8 58.5
– JavaMode 3.5 29.4 9.6 39.0 24.5
JHotDraw:
– ZoomDrawView 3.4 7.6 1.8 9.4 6.4
– QuadTree 3.7 7.3 12.3 19.6 10.1
ANTLR:
– Grammar 15.3 104.6 80.7 185.3 126.5
– DFA 15.3 108.0 4,805.8 4,913.8 2,501.8

Table 4.4: Measurement of data collection performance.

ANTLR’s figures are quite different from the GUI tools’: there are much fewer
classes, but a very high instrumentation density. This is probably due to the fact
that batch tools contain pure application logic, while GUI based tools naturally
contain a lot of GUI code, which has a low control flow complexity, but is lengthy.

Data collection overhead. The overhead produced by tracing for Dynamic
Object Process Graphs with the online and offline method is shown in Tables 4.3
and 4.4. Offline construction requires the additional object trace filtering step and
the following raw graph construction, so these three steps have to be combined
to be comparable to online tracing. These two offline steps will be called “filter”.

The use cases differ in the number of objects that are created of the relevant
class and in the number of concurrently running threads. This also has a great
impact on tracing overhead. In the online approach, for each additional object,
another GraphView has to be created and maintained, so runtime will increase.
For the offline approach, additional objects only become important in the filter
phase, because then, an own object trace must be extracted for each of the objects.
When many threads are involved, they must all be synchronized, so there will be
more waiting time than with a few threads. This affects both the online and the
offline approach. The online approach additionally has to create and update the
ThreadInfo data structures for each thread.

The number of events that occur during use case execution differs between
online and offline approach, although the same actions have been performed.
This is due to the fact that arrival at the call site (on return from a subroutine) is
not an event for offline tracing, but is one for online tracing. Another reason is
that timing changes, specially in the presence of multithreading and interaction.
In this way, instrumentation modifies application behavior. For ArgoUML, a
longer running time corresponds to more events, which is not true for the other
applications.

72

4.3 Case Study: Tracing Overhead Online/Offline

18.97 130.44 29.76 154.96 CD 0
CD 1

16.21 59.43 15.82 62.77 SD 0
SD 1

12.56 45.97 29.21 43

no instr old instr old filter new instr
ClassDiag

SeqDiag

Project Proj 0

Ed. 0 Ed. 1 Java 0 Java 1
0

5

10

15

20

25

30

35

J Editor

filter

instr.

original

Zoom0 Zoom1 Quad 0 Quad 1
0

1

2

3

4

5

6

JHotDraw

filter

instr.

original

CD 0 CD 1 SD 0 SD 1 Proj 0 Proj 1
0

2

4

6

8

ArgoUML

filter

instr.

original

Gram.0 Gram.1
0

5

10

15

ANTLR

f ilter
instr.

original

DFA 0 DFA 1
0

100

200

300

400

ANTLR

f ilter
instr.
original

18.97 130.44 29.76 154.96 CD 0
CD 1

16.21 59.43 15.82 62.77 SD 0
SD 1

12.56 45.97 29.21 43

no instr old instr old filter new instr
ClassDiag

SeqDiag

Project Proj 0

Ed. 0 Ed. 1 Java 0 Java 1
0

5

10

15

20

25

30

35

J Editor

filter

instr.

original

Zoom0 Zoom1 Quad 0 Quad 1
0

1

2

3

4

5

6

JHotDraw

filter

instr.

original

CD 0 CD 1 SD 0 SD 1 Proj 0 Proj 1
0

2

4

6

8

ArgoUML

filter

instr.

original

Gram.0 Gram.1
0

5

10

15

ANTLR

f ilter
instr.

original

DFA 0 DFA 1
0

100

200

300

400

ANTLR

f ilter
instr.
original

(a) ArgoUML

18.97 130.44 29.76 154.96 CD 0
CD 1

16.21 59.43 15.82 62.77 SD 0
SD 1

12.56 45.97 29.21 43

no instr old instr old filter new instr
ClassDiag

SeqDiag

Project Proj 0

Ed. 0 Ed. 1 Java 0 Java 1
0

5

10

15

20

25

30

35

J Editor

filter

instr.

original

Zoom0 Zoom1 Quad 0 Quad 1
0

1

2

3

4

5

6

JHotDraw

filter

instr.

original

CD 0 CD 1 SD 0 SD 1 Proj 0 Proj 1
0

2

4

6

8

ArgoUML

filter

instr.

original

Gram.0 Gram.1
0

5

10

15

ANTLR

f ilter
instr.

original

DFA 0 DFA 1
0

100

200

300

400

ANTLR

f ilter
instr.
original

(b) J Editor

18.97 130.44 29.76 154.96 CD 0
CD 1

16.21 59.43 15.82 62.77 SD 0
SD 1

12.56 45.97 29.21 43

no instr old instr old filter new instr
ClassDiag

SeqDiag

Project Proj 0

Ed. 0 Ed. 1 Java 0 Java 1
0

5

10

15

20

25

30

35

J Editor

filter

instr.

original

Zoom0 Zoom1 Quad 0 Quad 1
0

1

2

3

4

5

6

JHotDraw

filter

instr.

original

CD 0 CD 1 SD 0 SD 1 Proj 0 Proj 1
0

2

4

6

8

ArgoUML

filter

instr.

original

Gram.0 Gram.1
0

5

10

15

ANTLR

f ilter
instr.

original

DFA 0 DFA 1
0

100

200

300

400

ANTLR

f ilter
instr.
original

(c) JHotDraw

18.97 130.44 29.76 154.96 CD 0
CD 1

16.21 59.43 15.82 62.77 SD 0
SD 1

12.56 45.97 29.21 43

no instr old instr old filter new instr
ClassDiag

SeqDiag

Project Proj 0

Ed. 0 Ed. 1 Java 0 Java 1
0

5

10

15

20

25

30

35

J Editor

filter

instr.

original

Zoom0 Zoom1 Quad 0 Quad 1
0

1

2

3

4

5

6

JHotDraw

filter

instr.

original

CD 0 CD 1 SD 0 SD 1 Proj 0 Proj 1
0

2

4

6

8

ArgoUML

filter

instr.

original

Gram.0 Gram.1
0

5

10

15

ANTLR

f ilter
instr.

original

DFA 0 DFA 1
0

100

200

300

400

ANTLR

f ilter
instr.
original

18.97 130.44 29.76 154.96 CD 0
CD 1

16.21 59.43 15.82 62.77 SD 0
SD 1

12.56 45.97 29.21 43

no instr old instr old filter new instr
ClassDiag

SeqDiag

Project Proj 0

Ed. 0 Ed. 1 Java 0 Java 1
0

5

10

15

20

25

30

35

J Editor

filter

instr.

original

Zoom0 Zoom1 Quad 0 Quad 1
0

1

2

3

4

5

6

JHotDraw

filter

instr.

original

CD 0 CD 1 SD 0 SD 1 Proj 0 Proj 1
0

2

4

6

8

ArgoUML

filter

instr.

original

Gram.0 Gram.1
0

5

10

15

ANTLR

f ilter
instr.

original

DFA 0 DFA 1
0

100

200

300

400

ANTLR

f ilter
instr.
original

(d) ANTLR

Figure 4.6: CPU time [s] consumed by online and offline tracing in compar-
ison to normal program execution. 0=offline, 1=online. The light gray area
indicates normal program execution time, the black area denotes the additional
tracing overhead. The dark gray offline area indicates time consumed by filtering
for object traces. CD=ClassDiagramGraphModel, SD=SequenceDiagramGraph-
Model, Proj.=Project, Ed.=Editor, Java=JavaMode, Zoom=ZoomDrawView,
Quad=QuadTree, Gram.=Grammar

73

Chapter 4 — Online DOPG Extraction

The trace files produced by the offline approach consumed 809 MB for the
largest use case. This trace contains the events of only 15 seconds CPU time.
When running even larger use cases, trace file size will increase accordingly. This
illustrates the need for alternatives that do not need to store those large amounts
of data.

Concerning execution times, in some cases the online variant requires more
CPU time, in other cases this is true for the offline variant. When taking into
consideration the additional filtering effort required for the offline approach, the
online variant is always faster. Figure 4.6 visualizes CPU time ratios for the dif-
ferent use cases. The y-axis denotes the factor to which the consumed CPU time
increases. The use cases as executed with the original program are normalized
to 1. The black parts of the bars depict the overhead during execution, while
the gray area corresponds to the additionally needed filtering for the offline ap-
proach. Execution time overheads differ a lot, from 88% for the ZoomDrawingView
(online) up to factor 22 for the Editor (offline). J even has a higher overhead than
ArgoUML, although ArgoUML supposedly is the more complex application. Ap-
parently, J does a lot of background work (such as autosaving) which produces
lots of events.

In one case, the online approach is remarkably slower: in the ANTLR use case
with 75 simultaneously followed objects. This can be explained by the increased
overhead of constructing multiple GraphViews. As expected, in cases when many
instances of a class are created, the offline approach is more efficient concerning
application runtime. On the other hand, the effort required for offline filtering
also increases and here even exceeds the application runtime by far. In sum, the
total CPU time required for the offline approach is twice as high as for the online
approach in this case.

Another observation is that use cases with many threads (J, ClassDiagram)
generally have a higher runtime overhead when instrumented. This strengthens
the assumption that performance loss is higher in the presence of many threads.

From the user’s view, the interactive applications were usable nearly as normal
in all cases. The tracing overhead did not slow down the applications to an
unacceptable degree. A maximum CPU usage increase by factor 22 for the J
editor may seem very high but was not disturbing in practice.

For the batch application ANTLR, the tracing overhead of a factor of up to 8 for
a single object is acceptable as well. However, when there are many objects to be
traced in parallel, the online approach slows down the application significantly.
For the DFA case, this results in a factor of 163, which is unacceptable in many
cases. The offline approach has a runtime overhead of only factor 7. In summary,
each approach has its preferred application scenarios.

4.4 Summary

This chapter has shown that Dynamic Object Process Graphs are applicable in
practice, even for larger and interactive systems. The optimizations for the offline

74

4.4 Summary

approach and the newly introduced online approach both allow tracing applica-
tions with an acceptable overhead. The online approach turned out to be always
faster when investigating a single object, while the offline approach clearly leads
to a shorter application runtime when following many objects simultaneously.
However, the overall runtime including filtering for all objects is always longer
than immediate online extraction.

Online construction of Dynamic Object Process Graphs also opens new ap-
plication potentials. For example, the evolving graph can be shown while the
application is running, providing information about which relevant parts of the
application have already been visited. See Chapter 10 for a discussion of some
ideas for taking advantage of these possibilities.

75

Chapter 5

Case Study: Comparison to Statically
Extracted OPGs

As introduced in Chapter 2, there already exists a static OPG extraction technique
in the Bauhaus project. So far, it has been an open question how much the results
of static and dynamic OPG extraction for the same object differ. To clarify this
question, I conducted another case study. It investigates the application of OPG
extraction to three different programs for quantitatively comparing the results of
static and dynamic analysis.

5.1 Procedure

The comparison of static and dynamic OPGs must be based on a comparable
representation. Both approaches deliver slightly different graphs that have to be
unified before they can be compared. One difference is that dynamic tracing can
produce OPGs for every single instance, whereas static tracing is only capable of
delivering one combined OPG for all objects that have the same allocation point.
The results of dynamic analysis therefore have to be combined for all objects that
are declared or allocated at the same source code location. Another difference is
context-sensitivity: the static analysis is context-sensitive, whereas the dynamic
extraction algorithms from Chapters 3 and 4 are not. Therefore, all nodes of
the static OPG that originate from the same source location have to be unified
first. The implementation of the static analysis does not differentiate between
different call traits to the same allocation point (as opposed to the information in
the corresponding paper [46]), therefore both approaches handle static allocation
points context-insensitively.

After these unifications, OPGs for all statically detectable objects are extracted
by both analyses. For the dynamic analysis this is done for all test cases. As
mentioned in Section 2.5, a program requires input parameters to execute – and,
in particular, to perform a dynamic analysis. We call the set of input parameters
that are used as the basis for dynamic analysis the test suite, which consists of
individual test cases. For the test suite, a high test coverage is anticipated to get

77

Chapter 5 — Case Study: Comparison to Statically Extracted OPGs

as close as possible to the complete dynamic trace. Due to the large amount of
data produced by offline dynamic tracing, the tests were run only for small to
medium size programs and short test cases. This allowed the extraction OPGs for
all objects – which is not feasible with the online approach (see Chapter 4).

In this case study, we distinguish between two different kinds of objects: local
variables and heap objects. Local variables are mostly basic types, such as int or
pointers, but also structs and arrays. Heap objects are created by calling memory
allocation functions such as malloc. Every access of the allocated memory area is
then treated as an access to the object. Objects of the third type – global variables
– are not considered; they are similar to heap objects in that they may be used
everywhere in the application and during most of the application runtime.

The choice of this general kind of object leads to a large number of objects
even for small programs. Local variables are usually only used in a very limited
fraction of a program, but can still be interesting for protocol validation. The
Object Process Graphs for local variables are not necessarily just intraprocedural,
because they can be passed as reference parameters to other functions, and then,
automatic validation becomes of interest.

As an indication for the similarity of two corresponding graphs, the number of
nodes and edges in each graph can be compared. When the number of nodes and
edges is identical, the two graphs should be identical in most cases as well, because
a DOPG is always a subgraph of the corresponding statically derived OPG. (This
was also checked and confirmed for random samples.) The only exception occurs
when the static trace is incomplete due to insufficiencies of points-to analysis.

5.2 Underlying Points-To Analysis
In Chapter 2, we learned that points-to analysis has a strong influence on any
static analysis. This makes a short discussion of the used underlying analyses
necessary. In this case study, two different points-to analyses are used to obtain
the static traces, namely, the one by Wilson [213, 214] and the one by Das [39].
This is done because Wilson’s precise technique is only applicable to very small
systems, and even some of the small analyzed systems also only allow the use of
less precise analyses.

Wilson’s points-to analysis is a context-sensitive and flow-sensitive analysis
that models the effects of pointer expressions (including arithmetics) by way of
an abstract storage. The abstract storage consists of a set of abstract blocks that
represent contiguous pieces of memory. This way, programming practices that
circumvent the type system – as in particular possible in C – are safely handled.
Wilson’s analysis is very precise but also very costly. It could only be applied to
one of the analyzed systems, namely, concepts. In contrast to that, Das’s analysis
is flow-insensitive and context-insensitive. This analysis scales well, but produces
less precise results.

Both pointer analyses cannot distinguish accesses to different array elements,
except for rare cases. Hence, such accesses are treated as partial accesses to the
whole array. They do not trace the individual objects in the array.

78

5.3 Subject Systems

System LOC SLOC Functions Coverage
concepts 8,469 3,647 171 75.8%
ftp 6,077 4,984 239 59.5%
grep 10,749 7,563 149 54.7%

Table 5.1: Size measures and statement coverage of test suite for subject systems.

Moreover, the current implementations of the pointer analyses in Bauhaus
optimistically ignore effects through library calls. This optimistic approach may
produce incomplete information in certain cases. For instance, a pointer to a
function may be transfered to a library function whose code is not available and
then called from within the library. This control flow goes unnoticed if the effect
of the library function is neglected. To be conservative, one would need to assume
the worst for every library function – an approach that lessens the precision of
the static Object Process Graphs to the point of uselessness. Ideally, one should
model the behavior of library calls through stubs linked to the application to be
analyzed. However, that is a lot of work and requires to know the effects of all
library functions.

As a consequence of the optimistic approach, the dynamic analysis, which
tracks such effects, may yield a Dynamic Object Process Graph that is not a
complete subgraph of the static one.

5.3 Subject Systems

The static analysis by Eisenbarth et al. was only available for C at the time this
case study was performed (2005). Therefore, I was only able to compare object
traces of C programs. Meanwhile, the static analysis is also available for C++.
However, the basic static analyses have not changed for C, so the results would
be the same today. Table 5.1 shows various size measures for the chosen systems.
LOC denotes the lines of code including blank lines and comments as measured
by the Unix tool wc. SLOC denotes the physical lines of codes, that is, counts
only lines of code with at least one C token. It was computed with the tool
sloccount1. Column “Functions” gives the number of function definitions, and
the “Coverage” column shows the test coverage (on line level) that was reached
when running the test cases for dynamic analysis.

The first analyzed system is concepts2. Concepts is a tool for performing
formal concept analysis. The test.in file that is included in the distribution was
used for the tests, and conceptswas run with different command line arguments.
This way, a test coverage of 75.8% (as measured by gcov) was reached. When the
generated scanner and parser in concepts is not considered, coverage increases
to 91.2%.

1http://www.dwheeler.com/sloccount/
2http://www.st.cs.uni-saarland.de/~lindig/src/concepts.html

79

Chapter 5 — Case Study: Comparison to Statically Extracted OPGs

#local variables #heap objects
System points-to static dynamic static dynamic
concepts Wilson 284 268 25 24
ftp Das 340 260 7 3
grep Das 456 275 67 43

Table 5.2: Static/dynamic object counts.

The remaining code that is not executed is mostly for error handling. These
branches would only be executed when malloc cannot allocate any more memory,
when a function is used in a wrong way or in a way different from concepts, or
when something like file I/O fails. Therefore, most of these cases will never
occur under normal conditions. However, they are of course contained in the
static traces, but are not contained in the dynamic traces. Also, some of the data
structures are written to be generally useful, but are used in a quite constrained
way within concepts. They therefore contain code that can never be reached in
the context of this application.

NetKit ftp3 is the standard internet file transfer program for Unix. For this
study, version 0.10 of this tool was analyzed. A set of test cases that use all the
different ftp commands and modes in different combinations was used. However,
it was hard to reach a high test coverage, since a large portion of the code deals
with error handling and the different behavior of different servers. Therefore,
tests covered only about 60% of the code.

Grep4 is a GNU tool to search for regular expressions in text files. For this
study, version 2.5 of grep was analyzed. Grep comes with a test suite with about
380 test cases which was used for the dynamic analysis. Hence, as opposed to the
other two case studies, I did not write my own test cases, but used existing ones,
which makes the experiment even more realistic. Interestingly enough, however,
I found that the statement coverage of this test suite is only 55 percent, far lower
than in concepts and also lower than in the ftp case study.

5.4 Results

Table 5.2 shows how many local and heap objects were detected by static and
dynamic analysis. Dynamic analysis did not detect all statically detected objects,
since some objects are declared and used within dead code or are not covered by
the test cases. However, for concepts, nearly all statically detectable objects are
also used in the test cases.

The medium, average, and maximum node and edge counts for the static and
dynamic analyses of local and heap variables are shown in Table 5.3. Obviously,
the number of nodes and edges is much higher in the statically extracted graphs

3ftp://ftp.uk.linux.org/pub/linux/Networking/netkit/
4http://www.gnu.org/software/grep/

80

5.4 Results

#nodes #edges
System Class S/D med avg max med avg max
concepts Local Stat. 12 20 317 14 26 444

Dyn. 6 12 82 6 15 107
Heap Stat. 380 517 1,594 589 864 3,004

Dyn. 86 99 311 129 153 584
ftp Local Stat. 21 27 152 28 41 251

Dyn. 7 10 42 7 11 56
Heap Stat. 25 87 417 24 141 717

Dyn. 21 28 53 28 42 83
grep Local Stat. 19 29 453 25 44 791

Dyn. 10 18 138 10 24 208
Heap Stat. 152 184 1,242 262 313 2,086

Dyn. 51 59 186 78 102 349

Table 5.3: Object Process Graph node and edge counts per system, object class,
and extraction method: Median, average, and maximum values.

than it is in the dynamic graphs. Also, there is a big difference between local
variables and heap objects. The dynamic graphs for local variables cover much
more of the static graphs than the heap object graphs do.

Interestingly, the number of nodes resulting from static analysis with respect to
local variables is comparable across systems even though the sizes of the systems
differ by a factor of 2 (see Table 5.1 in terms of SLOC). On the other hand, the
respective numbers for heap variables and static analysis differ by an order of
magnitude. Even though the more precise pointer analysis was used for concepts,
the static Object Process Graphs of concepts are the largest. For this system, also
the Dynamic Object Process Graphs are much larger. This indicates that heap
variables are used more globally in concepts than in the other two systems.

Figure 5.1 shows the percentage of nodes and edges that are contained in the
Dynamic Object Process Graph for local variables, compared to the static graph
for the same object. The objects are uniformly distributed along the X axis in
ascending order of percentage (empirical distribution function), and the Y axis
shows the percentages. The curve for edges is always very close to the node
percentage curve it belongs to.

For local variables, there is always a set of graphs for which the node and edge
counts are identical, which indicates that the entire graphs are most probably
identical. For concepts, this is true for about 40% of the graphs, but for the other
test cases, it is true for only 15% or less. It is also noticeable that concepts’ curve
rises faster than the other candidates’ curves do, which probably has to do with
the higher test coverage that was reached in concepts, compared to the other two
systems.

As can be seen from Figure 5.1, it is apparently possible to completely construct
local variables’ Object Process Graphs by dynamic trace extraction in many cases.

81

Chapter 5 — Case Study: Comparison to Statically Extracted OPGs

Figure 5.1: Local Variables: Percentage of nodes in Dynamic Object Process
Graph compared to the corresponding static one. The X axis is an equidistant
enumeration of all OPGs in ascending order of percentages (empirical distribu-
tion function).

Figure 5.2: Heap objects: Percentage of nodes present in DOPG. ftp is missing
because it only contains three heap objects.

82

5.4 Results

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160 180 200 220 240

concepts
grep
ftp

Figure 5.3: Local variables: Number of nodes in statically extracted object process
graphs (X) compared to the number of nodes in their dynamic counterparts (Y).

Yet, the graph is still incomplete in many other cases because the test cases do not
lead to the execution of every possible sequence of operations with regard to each
object. Also, static traces may contain infeasible paths.

In contrast to that, when regarding Figure 5.2, which shows the same infor-
mation for heap objects, we see that those curves stay much lower for most of
the objects and hardly ever reach the 100% line. For concepts, 85% of the objects
even stay below the 40% line. The high test coverage does not have a great effect
in this case. The grep test case has a much lower test coverage, but the two curves
are very close to each other.

The results for heap objects differ much more between static and dynamic
analysis. Manual evaluation of the graphs for these cases revealed that in fact the
static traces contain a lot of irrelevant nodes and edges. Those paths often have
nothing to do with the investigated object, but are included in the static trace.
Anyway, as described above, this is usually due to the imprecision of points-
to analysis which in many cases cannot decide for sure whether a given pointer
variable points to the investigated object or not. On the other hand, due to missing
test cases, also missing parts can be found in the dynamically extracted pendants.
Since heap variables usually have a much longer lifetime than local variables, a lot
more operations may be applied to them, and these operations can be distributed
over many places in the code.

Figures 5.3 and 5.4 show the number of nodes in the static graph (X axis)
compared to the number of nodes in the corresponding dynamic graph (Y axis).
The number of DOPG nodes is a lower bound because test cases are usually
incomplete. Those cases where the static trace was incomplete due to the impre-

83

Chapter 5 — Case Study: Comparison to Statically Extracted OPGs

0

200

400

600

800

1000

0 200 400 600 800 1000 1200 1400 1600

concepts
grep
ftp

Figure 5.4: Heap objects: Number of nodes in statically extracted object process
graphs (X) compared to the number of nodes in their dynamic counterparts (Y).

cisions mentioned above (see Section 5.2) were elminated. They were identified
by comparing the static to the dynamic OPG: when the dynamic OPG is not a
subgraph of the static OPG, the static OPG must be incomplete. Therefore, in this
graph, the number of nodes and edges in the dynamic trace is always smaller or
equal to the corresponding number in the static trace; that is, the points in the
charts are at or below the diagonal. From Figure 5.3, one can see that most of
the local variables’ graphs are quite small (less than 60 nodes), and that dynamic
analysis delivers good results for these graphs in many cases. As the static graphs
get larger, the dynamic results do not contain all those nodes anymore, but still
deliver a relatively high percentage. When regarding the corresponding diagram
for heap objects in Figure 5.4, we can see that their static graphs are much larger,
and that the dynamic graphs mostly contain only a fraction of the static nodes.

In summary, for local variables, static and dynamic tracing deliver results that
are often close to each other or even identical. Results were even better for the
system that had a higher test coverage. However, this is only true for quite small
graphs of up to 30 nodes. In contrast to that, for heap objects, the results differ
a lot. Those static graphs mostly contain five to ten times as many nodes as the
dynamic graphs. However, more complex usage patterns as they occur with heap
objects – their lifetime may only end when the application terminates, and they
may be used from many places – are more interesting for analysis: local variables’
usage is often obvious from looking at a very limited amount of code.

This study regarded the completeness of dynamic OPGs in comparison to static
ones. However, the relevance of completeness depends on the application. If we
are interested in understanding how a certain set of use cases is implemented, it
is usually enough to perform the dynamic analysis based on only those use cases.
It is not necessary to reach a high test coverage in this case, since this would only

84

5.5 Summary

make the result much more complex without adding any relevant information.
On the other hand, if we want to recover the protocol, all possible cases should be
regarded. This is particularly true if we want to find potential protocol violations.
So for this application of Dynamic Object Process Graphs, completeness is more
important.

5.5 Summary

In this chapter, we compared Dynamic Object Process Graphs to Object Process
Graphs gathered through static analysis. The comparison showed that the Object
Process Graphs for local variables are largely similar in size for dynamic and
static analysis, but those for heap objects differ by an order of magnitude. The
difference may be partly attributed to an incomplete test suite, but the largest part
is likely to be explained by the imprecision of global static analyses. Nevertheless,
although on average the Object Process Graphs for local variables were similar
in size, their maximal values were quite different. This observation suggests a
combined approach in which dynamic analysis is used for objects whose static
Object Process Graph is too big due to the imprecise underlying points-to analysis.

85

Part III

Applications

87

Chapter 6

Case Study: What DOPGs can tell

The previous chapters introduced a novel dynamic OPG extraction technique and
compared it to an existing static one. The comparison showed that dynamically
derived OPGs are mostly much smaller than the static ones. The question now is
whether these graphs are useful despite that reduction, that is, whether the right
parts of the static OPGs are left out.

This chapter reports from several case studies in which experiences in applying
the dynamic OPG extraction technique were gathered. DOPGs were extracted and
visualized for a number of systems. Whereas static OPGs are usually too large
for immediate visualization, this is often not the case for dynamic OPGs. We
therefore can see and discuss what the extracted graphs look like and what their
potential applications are.

6.1 Subject Systems

All the subject systems of this case study are written in C. This is because this case
study was performed with a first prototype implementation of DOPG extraction
that only supported this language. Table 6.1 summarizes various size measures
for the subject systems. The first data column (LOC) contains the source lines
of code including blank and commented lines as counted by the Unix program
wc. The second column shows the number of non-empty non-comment lines
as counted by sloccount1. The third column lists the number of C files the
implementation consists of. The fourth column contains the number of function
definitions, which equals the number of nodes in the call graph without library
calls. The fifth column shows the number of nodes in the static control flow
graphs for these systems. The last two columns provide data on the result of the
dynamic analysis: they count the number of nodes and edges of the Dynamic
Object Process Graphs for the particular component that was investigated for the
respective system. As one can see, the reduction in terms of number of nodes is
enormous. On average, the size of the Dynamic Object Process Graph is 0.65%

1http://www.dwheeler.com/sloccount/

89

Chapter 6 — Case Study: What DOPGs can tell

CFG DOPG DOPG
System LOC SLOC Files Functions nodes nodes edges
sdcc 177,749 120,218 146 3,207 115,036 166 307
ircII 49,734 39,825 59 1,168 22,568 115 161
Rhapsody 18,827 14,693 37 499 9,561 67 111
SQLite 60,776 38,575 65 914 22,774 300 463

Table 6.1: Size measures of the subject systems.

of the size of the static control flow graph. Compared to that, the average size of
a slice is still about 33% of the original program for static slicing and about 20%
for dynamic slicing [19]. Even in comparison to the call graph, the reduction of
a DOPG is remarkable. However, the question is if these graphs are still useful.
The case study in this chapter demonstrates that this is in fact the case.

6.2 Symbol Table of a Large Compiler

This part of the case study demonstrates that the results of DOPG extraction are
useful even for important components of larger systems. It shows how the result
may help in program understanding.

sdcc2 is an open source C compiler for small devices. Version 2.4.0 was used
for this study. When analyzing a compiler, it is interesting how a central data
structure like the symbol table is used. Therefore, the Dynamic Object Process
Graph for the symbol table of sdcc was extracted. This component could easily
be located based on its filename (SDCCsymt). Figure 6.1 shows the result for the
compilation of a small program with two functions, a for loop and some integer
calculations. The size of the Dynamic Object Process Graph (measured as number
of nodes) is only 0.14% of the complete static control flow graph of the whole
system (see Table 6.1).

In the graph in Figure 6.1 and in the following, italic routine calls denote
application routines, while regular routine names with brackets denote routines of
the investigated interface (atomic routines). Two additional long distance arrows
(in red) were manually inserted to give an idea of the flow of control. From this
graph, we can see that first, the symbol table is initialized (initCSupport 1), then
the parser is called (yyparse 2). Inside the parser, the lexer 3 is called, which in
turn uses the symbol table to check the type of a symbol (check_type 4). Also,
for creating functions, the symbol table is accessed multiple times. The following
routines all use the symbol table directly or indirectly:

• checkFunction: has the function already been defined?

• findSym(): is the name already in use?

2http://sdcc.sourceforge.net/

90

6.2 Symbol Table of a Large Compiler

deallocLocal

Call

Call decorateType

processBlockVars

Call
Call

resolveSymbols

Call

processParms

Call

createFor

Call

createLabel

Call

deallocParms

Call

checkFunction

Call

createFunction

Call

check_type

Call

yylex

Call yyparse

Call

glue

Call initCSupport

Call

funcOfType

Call addSymChain
Call

processFuncArgs

Call

allocVariables

Call addSymChain

Final

Start

findSymWithLevel()

findSym()

findSym()

addSymChain()
findSymWithLevel()

deleteSym()

findSymWithLevel()

findSym()

addSym()

deleteSym()

findSym()

m

1

2

3

4
n

Figure 6.1: DOPG for sdcc.

• addSymChain(): resolve forward declarations

• allocVariables: create function declaration

• processBlockVars: allocate symbols for block

• resolveSymbols: resolve text to symbol table symbols

• decorateType: type resolving and checking

• processBlockVars: deallocate symbols for block

• deallocParms: deallocate parameters that have been allocated in allocVa-
riables / processFuncArgs

It is an interesting observation of this case study that the above list shows
a drawback of the DOPG representation. Routine processBlockVars is called
twice. The first time, it is called to allocate symbols, the second time, it is called
for deallocation. The concrete action is passed to the routine as a parameter.
This distinction gets lost in the DOPG representation because the branch occurs
only inside the routine. The representation does not show which call takes which

91

Chapter 6 — Case Study: What DOPGs can tell

branch – although the first call always takes one branch, the second call the
other. The same problem occurs for program slicing, too, when we enter the
same routine by way of two different data dependencies in two different calling
contexts. To make this distinction, we would need to add context-sensitivity to the
representation. To keep the representation as sparse as possible, we should refrain
from completely unfolding the graph to make the context-sensitivity explicit. We
would rather add context-sensitivity as annotations and unfold them on demand
of the analyst in an interactive browser.

The graph contains two interesting constructs. The first one consists of the
multiple calls of funcOfType m in initCSupport. The compiler creates the
names for support routines like __fsadd. Many of those names are created in
loops for different numeric types. So this routine consists of a sequence of calls of
funcOfType. Since we always have an edge to the entry and one from the return
node, we get this interesting network with the calling nodes located around
those two nodes and connected to each other. The second interesting construct
is the “spoked wheel” inside yyparse n . This “spoked wheel” is caused by the
generated parser, which consists of a big switch in the reduce step that depends
on the reduction rule to be applied. Only when the reduction rule for a function
is applied, createFunction is called. Due to the transformation of the switch
statement to a sequence of decisions in the normalization step (see Section 3.1.1),
a set of other state-indicating values has to be checked before this point is reached.
In case of other rules, each one returns via the true edge to the point where the next
token is read – the central node of the wheel. This leads to this special structure.

In summary, the extracted Dynamic Object Process Graph gives a good over-
view of how the symbol table is used and in which context. We are able to
recognize the individual steps related to the symbol table even though they are
globally distributed in a very large control flow graph.

6.3 Sockets in IRC Clients

This section demonstrates support in program understanding by applying DOPG
extraction to a standard component used in many programs. I will first show
the protocol for the component and then show Object Process Graphs obtained
through dynamic analysis for two different systems.

The use of standard Unix I/O operations is investigated in this study. These
operations are applied to the FILE data type. This data structure and the oper-
ations taking it as an argument type form an abstract data type. Alternatively,
handles can be used, which are represented by a regular int value. In order to be
able to process such handles in the same way as FILE objects, the operations on
handles are modeled as read/write operations; that is, executing an operation on a
handle is regarded as an access to the memory address that the handle “points to”.
System routines are replaced by decorators3 that additionally record that memory

3A Decorator is a standard design pattern that allows us to attach additional functionality to an

92

6.3 Sockets in IRC Clients

read write lseek fcntl ...

close

creatopen ...

Figure 6.2: Example protocol for files in C.

access. In C, all calls of such routines can be easily replaced by their decorators
via macros.

This data type is used for this study because it is frequently used in programs,
and because it has an interesting protocol. The expected protocol, that is, the
allowable sequence of operations, is described in Figure 6.2 (the dots indicate the
many other operations that can be applied to a FILE or a handle). It is interesting
to note that usually only excerpts of this protocol occur for an object. This excerpt
characterizes the object. The excerpt can be thought of as a role as, for instance,
a sequential writer or reader or random accessor, etc. The Object Process Graph
may help to indicate the role of an object.

6.3.1 ircII

ircII is a console internet relay chat application4. The central concern of a chat
application is communication, which is done using sockets (a special kind of file
handle). Therefore, the control flow with respect to the operations that are per-
formed on the socket handle should give a good overview about the organization
of the program’s basic functionality.

Dynamic tracing was performed on the ircII client. The test session included
connecting to an IRC server and executing a few typical commands. The resulting
raw trace contained 6.8 million events, which were then converted to an Object
Process Graph as described in Chapter 3. Figure 6.3 shows the complete Object
Process Graph. According to Table 6.1, the Dynamic Object Process Graph con-
tains only 0.45% of the nodes of the complete static control flow graph of the
whole system. Even compared to the call graph, which is often used for program

object [57].
4http://www.eterna.com.au/ircii/

93

Chapter 6 — Case Study: What DOPGs can tell

send() close()

Call

irc_exit

Call

Call

p_channel

Start

socket()

fcntl()

setsockopt()

Call

connect

Call connect_to_serverCall irc_io

Call irc_do_a_screen

send_line

Call

select()

read()

select() do_server

dgets

Call

login_to_server

Call

Call

fcntl()

Final
parse_command

and its call sites

command dispatching

through function pointers

send_to_server

main loop

1

2

4

3

7

5

6

Figure 6.3: DOPG for ircII.

understanding through visualization, there is still a reduction in the number of
nodes to 10%.

From the graph in Figure 6.3, it is quite easy to see what is going on in the ircII
application. Things start with the Start node on the right 1 . After the socket is
created and initialized in connect 2 , the I/O main loop is entered (irc_io 3).
From there, user commands are executed (irc_do_a_screen 4), and information
from a server is received and processed (do_server 5). Most calls then lead to
the send_to_server routine 6 . Finally, if an exit command has been issued, the
socket is closed, which leads to the Final node in the graph 7 .

The information in the Object Process Graph can help to gain an initial under-
standing of the program:

• Identify parts that are relevant for communication. In this case, also the
main loop has been located by simply following the flow of control.

• Understand call paths and control dependencies.

• Identify central routines (such as send_to_server).

94

6.3 Sockets in IRC Clients

Even when the irc_io routine has been identified as the main loop by other
means of feature location, it is much harder to see the basic interactions by inves-
tigating the 246 lines of C code than it is to just look at the 5 nodes in the graph.
A feature location technique that works on basic block level [99] could deliver
the right basic blocks, but one would still have to identify the relevant statements
within a potentially large set. Such a set difference based technique also has the
problem that the main loop is executed in every program run and is therefore
hard to isolate (also see Section 9.1.5).

Apart from this basic information, also implementation details can be seen
from this graph. For example, user commands are dispatched through function
pointers (see indication in the figure). This is the case when a single call node has
several outgoing call edges to different entry nodes – for direct calls, it has at most
one outgoing call edge. If dispatching was, for example, implemented through a
switch, we would see a cascade of decision nodes at that place.

In the graph, most of the different types of nodes and edges that were defined
in Chapter 2 are being used. Edge types and directions are not visible in this
figure. They are not necessary to get a basic understanding. But when going into
details, the types can provide additional information.

Most of the edges from Start to Call irc_io are return edges. There are no call
edges there because the object lifetime of the socket handle starts only with the
call of the socket function, and this call takes place deep in the call stack. On the
other side, control flow goes down into different routines (Call edges), and later
goes back up again (Return edges). This produces the typical call chains that split
and join again and again.

A simple standard spring embedder layout was used for this graph, along with
some manual postprocessing. The red long-distance arrows have been inserted
manually. Also, some of the node labels (certain function calls within call chains)
have been manually removed to make the graph more readable. Readability of
this graph could probably be improved even further by using a specialized layout
algorithm.

6.3.2 Rhapsody

Rhapsody IRC5 is another text console IRC client. According to the authors, it has
been written entirely from scratch and does not have common roots with ircII.
Anyway, the use of sockets should be similar, and it is interesting to see how the
Object Process Graphs of the two IRC clients differ. I performed the same dynamic
analysis on Rhapsody as I did on ircII. The result is shown in Figure 6.4.

The general structure looks similar to the ircII graph (Figure 6.3): first, the
socket is created 1 , and then we get into the main loop (dashed arrow to 2).
From there, we have different emerging paths for reading a line 3 and processing
channel and server events 4 that all eventually lead to a central send routine 5 .

5http://rhapsody.sourceforge.net/

95

Chapter 6 — Case Study: What DOPGs can tell

socket()

parse_message
Call

Call

Call
recv_linerecv()

select()

connect_to_server
Call

fcntl()
connect()

send()

Call send_server

Call
sendcmd_server

sendmsg_channel
Call

Call parse_input
execute_ctcp

Call

process_server_events
Call

Finish

Start

main loop

process_channel_events

1

2

4

3

5

Figure 6.4: DOPG for Rhapsody IRC.

In contrast to ircII, we also get back into connect_to_server. Apparently, we first
need to go into the main loop and then get back to connect to the server. Another
difference is the routine that is used to receive text from the server: Rhapsody
uses recv, while ircII calls read. In contrast to ircII, Rhapsody has an additional
intermediate function for sending server commands (sendcmd_server). Apart
from these differences, most routine names that appear in these graphs can be
easily mapped to each other, which is possible because of the similar and limited
set of operations that have been applied in the use cases and the meaningful
names that routines have in both applications. Of course, when names are not
meaningful, this becomes much more difficult. However, commonalities in the
structure of the graphs could still give hints for a mapping.

What is also interesting here is that close is never called on the socket. The
question is whether that is caused by wrong usage of the application (disconnect
was not explicitly called), or if it is an application error. Although the socket will be
implicitly closed when the application terminates, this might lead to inconsistent
behaviour when reusing that part of the program in a different context. In fact,
examination of the code revealed that the socket is only closed when disconnect is
explicitly performed by the user before exit.

96

6.4 SQLite Database

open fstat lseek read step

prepare

close

process_input

callback

Figure 6.5: Simplified DOPG for SQLite.

In summary, each of the two Dynamic Object Process Graphs provide a good
overview of the respective IRC client, and they can also be used to map function-
ality to each other. In the next section, we investigate a different usage pattern of
the file handle.

6.4 SQLite Database

As a last case, the technique to obtain Dynamic Object Process Graphs is applied
for files in a database system. This part of the case study reveals that Object
Process Graphs can become large and difficult to cope with. To handle such large
graphs, further processing or assistance is necessary.
SQLite (version 3.2.6) is a C library that implements a self-contained, embed-

dable, zero-configuration SQL database engine.6 I chose this application because
a database engine can naturally be expected to contain interesting file system
interactions. The library includes a command line utility for accessing databases
and executing SQL statements, which is used as a driver for dynamic analysis.
The call graph of SQLite contains 1,649 nodes and 3,098 edges (see Table 6.1).

The application of dynamic tracing on the SQLite tool results in a complex
graph. It consists of 300 nodes and 463 edges, which is only 1.32% of the number
of nodes of the static global control flow graph, but still too much to depict it
here. The test cases that were performed include standard database operations,
such as insert, delete, update, select statements, as well as metacommands
like dumping all tables. Also for this graph, the operations performed can be
identified in the graph and help gaining an initial understanding of the system.
But, due to the size of the graph, this is much harder than in the previous examples.
Further assistance from a tool would probably be needed for using this large
DOPG efficiently.

However, the graph can still be used as a basis for further simplifying transfor-
mations. One possible approach is to reduce the graph to the atomic operations.
Figure 6.5 shows a simplified Object Process Graph for SQLite. Whereas the orig-
inal Object Process Graph contains 300 nodes, the simplified one contains only

6http://www.sqlite.org/

97

Chapter 6 — Case Study: What DOPGs can tell

about 60 nodes. In Figure 6.5, the gray nodes represent more complex graphs
containing additional calls of read, write, lseek and other operations. This
simplification was done manually.

Such a simplified representation is better suited to validate and reconstruct pro-
tocols, although it introduces some imprecision. It can be processed by standard
algorithms for finite state automata to unify Object Process Graphs and validate
protocols. This approach is described, discussed, and evaluated in Chapter 7.

6.5 Summary

The case studies that were presented in this chapter illustrate that the results from
DOPG extraction can provide useful information about an application: they may
help in locating features, recovering a component’s protocol, and even getting an
idea about the general structure of an application. The graphs turned out to be
quite useful despite their relatively small size.

However, the SQLite case study also showed the limitations of pure DOPGs.
For large applications and heavily used objects, the graph may be so large that
its immediate visualization is no longer comprehensible. Further processing is
needed in this case. Such an approach is investigated in the next chapter: the
reduction to atomic methods for protocol recovery. The use of visualized DOPGs
for program understanding is further examined in Chapter 8.

98

Chapter 7

Dynamic Protocol Recovery

The motivation of this thesis started with the need to recover protocols as one
aspect of a system’s architecture, and in the last chapters, we got to know extrac-
tion techniques that can provide the basis for that. Also, the SQLite case study in
Section 6.4 showed that it could be a good idea to reduce a DOPG to the primitive
operations. In this chapter, I elaborate on this idea and show how DOPGs can be
used as a basis for protocol recovery. The necessary transformations to protocol
automata are described in detail. In a case study, the new technique is quanti-
tatively compared to other existing dynamic protocol recovery approaches. For
this comparison, I introduce and use a novel similarity measure for finite state
automata. 1

7.1 Introduction

Modern static bug finders and security vulnerability detectors perform sophisti-
cated checks. These tools are based on advanced analyses, such as global control
and data flow analyses, model checking, or abstract interpretation. There are
both successful open-source tools, such as FindBugs, PMD, Lint and its deriva-
tives as well as commercial tools, such as Intelli/J, Grammatec/CodeSonar, Cover-
ity/Prevent, and Polyspace, using such technologies.

Many of these tools find generic defects, such as potential null pointer deref-
erences or buffer-overflow problems. They may be used to limit the effects of
weak programming languages (for example, no index range checks at runtime) or
frequent programming errors. Although useful, such tools do not help in finding
application-specific defects, where a component is not used according to its spec-
ification. More advanced tools may detect such problems by allowing an analyst
to create customized checks. Engler et al. [49], for instance, developed a technique
where checkers can be specified as finite state automata (FSA). These FSA specify

1The contents of this chapter have been previously published [149]. Due to an error in the con-
ference paper, the automaton difference calculation algorithm and the resulting distance metrics
that are presented in this thesis differ slightly from the originally published version.

99

Chapter 7 — Dynamic Protocol Recovery

the allowable sequences of operations of a component – its protocol – in terms of
a regular language.

Engler’s technique checks code by traversing the control flow graph and sym-
bolically executing the operations. The effect of the symbolic execution is a tran-
sition in the FSA and is applied for each operation in the code that is part of the
alphabet of the FSA. An error state in the FSA indicates a potential defect in the
code. The technique has been successfully transferred to industry by way of En-
gler’s spin-off Coverity2, implemented in their tools Prevent and Extend. Coverity
runs its checkers regularly on large open-source projects, such as GNU/Linux.
These checks have discovered thousands of defects in GNU/Linux, including sev-
eral security alerts. Similar techniques are used by GrammaTech’s CodeSonar.

To write application-specific checkers, an analyst needs to know the protocol
of a component in the first place. However, as discussed in Chapter 1, the protocol
is not specified in many cases. Sometimes, it is informally included in the docu-
mentation, but this makes it impossible to check compliance of applications with
these protocols automatically. If the protocol was available in a machine-readable
way, adherence could be checked, and this could help to make software more
reliable and less erroneous. Also, the protocol could be used to automatically
generate state-based tests for the component.

In summary, the usefulness of having the protocol of a component is un-
doubted. It is therefore desirable to be able to reconstruct the protocol of a
component. In the remainder of this chapter, I will therefore only show how the
protocol can be recovered based on DOPGs and what the resulting protocols look
like. The fact that these protocols can be used to detect errors in applications has
already been proven by others, as the Coverity example illustrates.

7.2 Protocol Representation

As introduced in Chapter 1, a protocol in the sense of this thesis describes the
sequencing constraints that are imposed on a component’s methods: it tells us in
which order these methods may be called. The protocol is part of the interface of
a component. So far, we have not discussed which formalism should be used to
express these sequencing constraints, and in particular, which expressiveness is
required or possible.

A recovered protocol will be used for checking whether given applications
adhere to the protocol. It therefore makes sense to investigate what the protocol
should look like for this purpose. Protocol validation aims at checking whether all
actual sequences of operations conform to the protocol. All actual sequences of
operations form a language; likewise, a protocol can be considered a language.
Hence, protocol validation needs to check whether one language is a subset of
another language. This test is in general only possible for regular languages.
Consequently, regular languages or finite state automata (FSA) are usually the

2http://www.coverity.com/

100

7.3 Related Research

b c

b
c

bb

a

c

c

(a) Prefix tree acceptor.

a

b

c

b

c

(b) One possible generalization.

a,b,c

(c) Another
generalization.

Figure 7.1: Prefix tree acceptor for the language sample {a,abc,c,bbbc,bbc} and
two possible generalized automata that may be derived from it.

notion of choice for protocol validation (see Section 9.5.8 for details). Therefore,
and to be comparable to other protocol recovery approaches, we also choose FSA
to represent a protocol. In such protocol automata, automaton states represent
program states, and transitions correspond to operations on a component.

Regular languages are restricted in their expressiveness in that they cannot
deal with recursion: they cannot count. For some cases, such as for the stack
example from Chapter 1, it would be good to be able to specify conditions that
involve counting. For example, you may want to specify that the number of calls
to one method relates to the number of calls to another method in a certain way.
This is not possible with a regular language. On the other hand, regular languages
cover a lot of the sequencing constraints that occur in practice, and the possibility
of doing automatic adherence checks compensates for this disadvantage.

7.3 Related Research

Related research in general is discussed in Chapter 9. However, I need to intro-
duce the alternative existing techniques to which I will compare my approach.
Therefore, let us start with an introduction of existing dynamic protocol recovery
techniques.

Dynamic protocol recovery has been subject to prior research. Researchers
have mostly focussed on automaton learning in this area: program traces, that is,
sequences of invocations of a component’s methods, are fed into a learner which
produces an automaton that accepts the given traces – and more [5, 152, 169].
Constructing an automaton that accepts exactly the given set of traces (prefix tree
acceptor, PTA) is simple: the common prefixes for each sequence lead to the same
branch node, and every unique suffix leads to a leaf node. Figure 7.1(a) shows an
example. However, such an automaton is not very useful. It only represents the
concrete sequencing information of the regarded applications that use the compo-
nent, although other usages might be allowed as well. Therefore, generalizations
are necessary. One possible result of generalization for the example PTA is shown
in Figure 7.1(b). Most automaton learning techniques apply different heuristics
to transform the prefix tree acceptor to a more general form, thus reducing the

101

Chapter 7 — Dynamic Protocol Recovery

number of states and transitions. This reduction is usually performed by apply-
ing different state-merging strategies. However, when generalizing too much,
the automaton becomes useless as well (overgeneralization). In the extreme, the
protocol automaton could be reduced to a single state with transitions on all pos-
sible events that lead back to this state, which allows any sequence of operations.
This is illustrated in Figure 7.1(c). The challenge is to apply the right amount of
generalization to get a protocol automaton that is most useful and meaningful for
a particular purpose. For example, one anticipated goal may be to get a protocol
that is as close to the real specification as possible.

Let us now look at some previously published protocol recovery approaches
that are based on automaton learning. These are the ones to which the DOPG
based approach will be compared later on.

Successor method. A straight-forward approach is to represent each method by
one state. Transitions between states indicate legal sequences of method calls.
Richetin et al. call this the successor method [160].

Whaley. As pointed out by Whaley et al. [209], the successor method has some
drawbacks: Firstly, only knowing the last method cannot capture the proper be-
havior of an object in many cases, because its sequencing constraints are often
more complex. Secondly, there may be methods that are state preserving; includ-
ing these in the model destroys its accuracy, since state-preserving methods may
be called in any state. They do not affect the further behavior because they do not
change the state. As a consequence, Whaley et al. propose to use multiple FSA per
component. Each FSA describes the protocol of only a subset of methods (model
slicing), for example one that implements an interface or accesses a particular
field. Whaley et al. also propose to ignore state-preserving methods during the
construction of the automaton and to just annotate them to the modifier states.
However, potentially important information is lost this way.

k-tails method. Biermann et al. [17] introduced the k-tails method. It starts with
the prefix tree acceptor and then merges states that are indistinguishable in the
set of accepted output strings up to a given length k. Steven P. Reiss [157] uses an
extended k-tails algorithm for learning an FSA that represents a set of traces. The
extensions deal with the creation of self loops (that is, edges for which source and
target node are identical) for sequences of length ≤ k of the same symbol, and an
automaton minimization step is performed at the end (see [157] for details). Reiss’
approach is not originally intended for protocol recovery, but for compressing a
trace. Nevertheless, the resulting FSA can as well be regarded as an interface’s
protocol when the trace consists of interface interactions only.

sk-strings approach. Raman and Patrick [152] modified the k-tails method for
stochastic automata. They merge states that are indistinguishable for their top

102

7.4 OPG Based Protocol Recovery

s percent of the most probable k-strings. A k-string does not need to end in an
accepting state when it has length k. The result is a probabilistic FSA (PFSA) that
is annotated with transition frequencies. Glenn Ammons [5] uses this approach
to infer an automaton that represents the protocol. In a postprocessing step,
a corer removes infrequently traversed edges from the PFSA. Ammons applied
this technique to XWindows programs and found several errors in the use of
XWindows components.

These are the approaches that are most closely related to the DOPG based
approach. Other, more distantly related approaches to protocol recovery are not
covered by the comparison, but are discussed in Chapter 9.

Differences to the OPG based approach. Since the presented approaches are
solely based on the sequence of method invocations of the investigated com-
ponent, they cannot distinguish between loops and repeated invocations of a
method. Also, automaton learning requires (that is, delivers better results in the
presence of) negative examples to prevent the resulting automaton from over-
generalizing [60], but these are never generated by real program runs of correct
programs. On the other hand, generalization is necessary when recovering a
protocol, because traces are only samples of all possible method invocation se-
quences. The problem here is to find the right compromise between generalization
and specialization.

Another thing to be considered is that you usually do not know if a program
is correct or not; it is therefore unknown whether an example is a positive or
negative one. Protocol recovery approaches can only assume that the program is
correct. The identification of errors is then transferred to the phase when the user
manually inspects the recovered protocol.

The protocol recovery approach that is described in the next section is based on
Object Process Graphs. Compared to the automaton learning approaches’ input,
which is just the call sequence information of a component, a Dynamic Object
Process Graph contains more information: it describes the overall control flow
of an application with respect to a single instance of a component (that is, one
object). Object Process Graphs contain information about the sequence in which
operations of the regarded object are being called or may be called. They also
contain information about loops, which are quite important for a protocol. This
makes OPGs a potentially good basis for protocol recovery.

7.4 OPG Based Protocol Recovery

The idea for OPG based protocol recovery is to transform a set of OPGs to a
single protocol automaton. The different input OPGs represent different usages
of instances of the same component. Figure 7.2 sketches the general idea for this
transformation. The transformation uses well-known algorithms from automata

103

Chapter 7 — Dynamic Protocol Recovery

OPG1

OPGn

OPG2

NFA1

NFA2

NFAn

NFA DFA
protocol

automaton

...

...

s
u

b
s
e

t
c
o

n
s
tr

u
c
ti
o

n

m
e

rg
e

tr
a

n
s
fo

rm
a

ti
o

n

re
c
u

rs
io

n
 e

lim
in

a
ti
o

n

Figure 7.2: OPG to protocol automaton transformation overview.

theory. A short introduction to finite state automata, the used notation, and the
necessary algorithms can be found in Appendix A. The foundations for the OPG
based protocol recovery approach have been laid for static OPGs by Heiber [74]
and Haak [65].

7.4.1 Algorithm

The general OPG based approach involves the following steps, which are inde-
pendent of whether the OPGs are extracted dynamically or statically:

1. Eliminate recursion for each OPG. The transformed graphs contain only
create, atomic_call, and access nodes. A transformation of labels from
nodes to incoming edges is performed on each graph. The resulting graphs
can then be regarded as non-deterministic finite-state automata (NFA). This
step is explained in more detail in Section 7.4.2.

2. Merge all these NFA, accomplished by merging their start nodes. The result
will usually be a highly redundant automaton because certain steps in using
a component are always the same. This redundancy is reduced in the next
steps.

3. NFA to DFA. This step uses the subset construction (see Appendix A or [81])
to get a deterministic finite-state automaton (DFA) that is equivalent to the
given non-deterministic one, which means that it accepts exactly the same
language. In our case, the algorithm has the effect that commonalities close
to the start node are unified.

4. Minimization. Next, the automaton is minimized with respect to the num-
ber of states. The minimization algorithm (see Appendix A or [81]) finds
all groups of states that can be distinguished by some input string. If two
states cannot be distinguished, they are merged to a single state. This step
tends to unify parts of the automaton that are close to the accepting nodes,
since these naturally form one group.

5. Additional transformations. Optionally, further simplifying transforma-
tions may be applied, depending on the degree of generalization that is

104

7.4 OPG Based Protocol Recovery

a

a b

b

c
s2

s1 s3

s4

a
c

s3

s4

b

s1/2

Figure 7.3: Simplifying transformation (a) example. States s1 and s2 will be
merged because all transitions from s1 (a and b) lead to the same states as those
from s2.

desired. For example, if the exact number of calls to the same method in a
sequence is not considered interesting, this can be reduced to a simple loop.

Two different but related transformations are used in the case study (Sec-
tion 7.6) as the 5th step:

(a) Merge two states s1 and s2 if there is a transition from s1 to s2 and the
transitions emerging from s1 are a subset of s2’s, considering transition
event and target state. This means that s2 must have a transition to itself,
labeled with at least the same events that lead from s1 to s2. Figure 7.3 shows
an example for such a case. Practically, this means that we do not care about
the minimum number of invocations of a method a before looping calls to
a. For more complex components, this transformation may be extended to
work on sequences of different method invocations as well (for example by
common substring detection).

(b) The second transformation that is applied was introduced by Angluin [7]
for inferring zero-reversible languages: if a state has two or more incoming
transitions with the same label, the source states of these transitions are
merged into one state. For the resulting automaton, it is always clear without
ambiguity which state was the previous one, given the last input symbol.
This is a further generalization of the previous transformation. In the case
study in Section 7.6, the effect of both of these transformations on the protocol
is investigated.

Depending on the type of transformation applied in step 5, previous transfor-
mations might have to be repeated. Transformations in this step are intended to
be generalizing and thus change the language described by the FSA.

Steps 3 and 4 use well known techniques. They are explained in detail else-
where [81]. The recursion elimination step is a bit more special and is discussed
in the next section.

105

Chapter 7 — Dynamic Protocol Recovery

call

call

A

enter

return

(a) original OPG

A

A

(b) routine copied

A

A

(c) NFA

Figure 7.4: OPG to NFA transformation: Multiple invocations of routine A lead
to copies (inlining).

7.4.2 Recursion Elimination

As discussed in Section 7.2, regular expressions or, equivalently, finite state au-
tomata are the notion of choice for most protocol validation approaches. In
contrast to that, OPGs are capable of describing a context-free grammar. They
contain routine calls and therefore allow recursion, which cannot be represented
by regular expressions. Hence, to get from an OPG to an FSA, the first step is to
eliminate recursion.

An intuitive way for eliminating recursion from an OPG is described by
Haak [65] in his diploma thesis. Call nodes are split into two separate nodes,
one connecting the incoming edge with the call edge, and the other connecting
the return edge with the outgoing edge. In case of function pointers or dynamic
binding, multiple call and return edges occur. For each invocation of a route, a
copy of that routine’s subgraph is inserted into the graph (inlining). The only
exception is the recursion case, when the existing copy is used. This way, the
mapping between call and return edges is maintained – otherwise, one would
not know which return edge to take, resulting in unnecessary overgeneralization.
Only in the recursion case, the call/return mapping is lost; this is the price we have
to pay for using regular expressions.

Figure 7.4 shows how the repeated invocation of the same routine leads to
copies of the routine in the resulting graph. If the invoked routine was not copied,
this would result in a loop, and then any number of invocations would be allowed.
In Figure 7.5, a recursive routine is resolved. Applying this transformation, the
correspondence between call and return and the guarantee that there are as many
calls as returns is lost. Note that the former return node has two outgoing edges.
In the OPG, the choice of which return edge to take was unambiguously given
by the corresponding call edge. In the resulting graph, the choice has become
non-deterministic. This has the consequence that instead of AnBn, the resulting
automaton accepts AmBn which is more general.

106

7.4 OPG Based Protocol Recovery

call call

B

A

enter

return

(a) original OPG

B

A

(b) no recursion

A

B

(c) NFA

Figure 7.5: Recursion elimination example. The original OPG creates sequences
AnBn, the resulting NFA accepts AmBn (m,n ≥ 0).

The new intermediate nodes (resulting from call, entry, and return nodes)
are then removed from the graph, along with all other nodes that are not atomic
method calls, attribute accesses, or the start or final node. Finally, the graph
is further transformed such that edges (instead of nodes) are labeled with the
atomic method names or read/write accesses. This can be accomplished by mov-
ing each node’s label to all incoming edges. The result can be regarded as a
non-deterministic finite-state automaton (NFA): nodes become states, and edges
become transitions. End nodes are transformed to accepting states.

7.4.3 Generalization

As discussed in Section 7.3, protocol recovery needs generalization. A certain
amount of generalization is intrinsic for the DOPG based protocol recovery ap-
proach. Sources of generalization include:

• Loops for which the loop body always contains only one atomic method call
or attribute access. This is not represented in the DOPG. Figure 7.6 shows a
for loop that could cause this problem. The readmethod is called once for
each object in the array. If x contains the regarded object only once, read is
always called only once, but the loop still remains in the DOPG. In order to
better handle this case, the number of invocations can be counted – but then,
you do not know if the resulting set of counts is just due to the chosen test
cases, or if it is complete. Therefore, this generalization should be accepted.

• Multiple invocations of the same method, when different operations are
relevant for the object. This may happen for example for invocations with
different parameters or a different environment. The different operations
are then simply combined, although they may never occur together in one

107

Chapter 7 — Dynamic Protocol Recovery

for (int i = 0;
i < x.length;
i ++) {

x[i].read();
}

read

T

F

Figure 7.6: Overgeneralization caused by loops (when x contains the object
exactly once).

call. This generalization could be prevented by adding context sensitivity in
creating distinct copies for different method invocations, but this could lead
to an explosion of the graph’s size.

• Recursion elimination, as discussed in Section 7.4.2.

• Additional simplifying transformations (see Section 7.4.1). The first trans-
formation (a) has two effects: for multiple method invocation, we lose the
information whether a certain minimum number of invocations is required,
and by the subset criterion, we allow additional transitions that were not
possible before. Transformation (b) loses even more information, allowing
further additional transitions.

All in all, there are many sources of generalization in the proposed protocol
recovery process. The amount can be influenced by choosing more or less addi-
tional transformations in step 5, whereas the other transformations (steps 1–4) are
mandatory. This makes the approach adjustable to the amount of generalization
that is desired, depending on the intended use of the resulting protocol.

7.5 Comparing Protocol Automata

In order to compare results of the different protocol recovery techniques, it is
necessary to compare the languages that are accepted by the recovered protocol
automata. An exact comparison of languages is often not possible because they
are infinite when loops are present. Therefore, alternative comparison measures
that are based on the finite state automaton or regular expression representation
have to be applied.

Lo et al. [122] compare two protocol automata A and B with a heuristic ap-
proach. The similarity between A and B is measured in terms of their generated
sentences. Automaton A is used to generate random sentences, which automaton
B tries to accept. The share of accepted words is then regarded as the precision of
A with respect to B, or as the recall of B with respect to A. Since this approach is
random based, it does not allow an exact comparison. The frequency at which the
different words occur is unknown in an FSA and cannot be considered. However,
this approach delivers a first approximation of similarity.

108

7.5 Comparing Protocol Automata

A B
P = A U

U

P = B U

U

U = A BU

d(A,B)

A B

d (A)U d (B)U

Figure 7.7: Illustration of the five involved automata in automaton difference
calculation. Arrows denote data flow; solid ones are automaton usage, dashed
ones are numbers.

I propose a new measure for automaton similarity that is inspired by Leven-
shtein’s measure for string distance [110]. The new measure can be regarded as
a kind of edit distance between two automata. The idea is to count the number
of edge additions and deletions that are necessary to get from one automaton to
the other. To do this counting in a defined (but not necessarily minimal) way,
we first need a unified representation of both, which naturally is the union of
the two automata. Each of the original automata can then be found in the union
automaton by following the transitions in the original and the union automaton
in parallel, which corresponds to the product automaton construction [81]. The
product automaton describes the intersection of both automata, that is, their com-
mon language. The distance between each of the two automata and their union
is calculated based on the information from product automaton calculation. Fi-
nally, the two distances are combined, resulting in the difference between the two
original automata. Figure 7.7 illustrates the data flow and the involved automata
of the metric.

The measure is calculated as follows. Let T(X) denote the number of transitions
in automaton X.

1. Input: two deterministic and minimal automata A and B.

2. Calculate the deterministic and minimal union U of A and B (see steps 2–4
of the recovery algorithm in Section 7.4.1).

3. While calculating the product automata PX of X and U (for X ∈ {A,B}), that
is, following the transitions in both automata in parallel, count

• the number of transitions nX in U that are never taken. Such unused
edges correspond to deletions.

• the number of transitions tX in PX which are the result of taking a
transition in U more than once. This corresponds to insertions.

The algorithm for this step is defined in Figure 7.8, and it is explained below.

109

Chapter 7 — Dynamic Protocol Recovery

Input: two minimized DFA AL = (QL,Σ, δL, qL,FL) and
AU = (QU,Σ, δU, qU,FU) with L(AL) ⊆ L(AU)

R := ∅; T := ∅; tx := 0; Q := {(qL, qU)}

while Q \ R , ∅ do

select r = (p, q) ∈ Q \ R
R := R ∪ {r}

foreach a ∈ Σ do

if δL(p, a) is defined and δU(q, a) is defined then

if r ∈ T then
tx := tx + 1

s := (δL(p, a), δU(q, a))
Q := Q ∪ {s}
T := T ∪ {(p, a)}

nx := |domain(δU)| − |T|

Figure 7.8: Calculation of tx and nx, based on lazy product automaton calculation.

4. The distance between X ∈ {A,B} and U is

dU(X) :=
nX + tX

T(PX) + T(U)
(7.1)

5. The difference between A and B is

d(A,B) :=
dU(A) + dU(B)

2
(7.2)

The algorithm for calculating tx and tn is shown in Figure 7.8. It is based on lazy
product automaton construction. The states of the product automaton consist of
pairs of states from the two original automata. Starting from the pair of start states,
the algorithm checks for each input symbol if it is accepted by both automata in
the current state, and if so, finds out to which states of the two automata they lead.
The pair of target states is then the target state of the transition in the product
automaton. T keeps track of the edges of U that have already been used, and this
information is used to calculate tx. The value of nx is then the number of edges in
U that have not been used.

Figure 7.9 shows an example for distance calculation between an automaton
A (left) and the union U (top) of A and another automaton B (B is not shown).
The product automaton PA is located in the center. Construction of PA starts at
the start nodes of A and U. From here, create is accepted by both automata, so
this is part of the product automaton. From the next state, push is accepted by

110

7.6 Case Study

P
A

create

popem
pty

empty

create

push

pop

empty
create

push

p
o

p

e
m

p
ty

push

empty

push

empty

push

push

A

U

Figure 7.9: Example for automaton difference calculation. The top automaton is
U (dashed transitions are never taken), the left one is A, and the central one is PA
(dashed transition inserted by taking the push transition a second time).

both automata. For U, this leads back to the same state (self-loop), which is not
the case for A, giving tA = 1. Two edges of U are never used, which means that
nA = 2. This results in a difference between A and U of dU(A) = 2+1

6+6 = 0.25.
This metric is non-negative and symmetric. For a distance metric, a third

property is required: triangle inequality. Unfortunately, this property is difficult
to prove due to the complexity of the underlying algorithms. However, I did not
find any counterexamples. The result of the metric is a value between zero and
one, indicating the degree of differences between the two automata: zero indicates
identity, and one indicates that they are completely disjunctive. The maximum
value is reached when only one transition of U is taken repeatedly, and all other
transitions are not taken. This gives nX = T(U) − 1 and tX = T(PX) − 1, which
makes dU(X) converge to 1 (given an increasing number of transitions).

7.6 Case Study

In this case study, the different protocol recovery techniques that were described
in Sections 7.3 and 7.4 are applied with the same input data, and the resulting pro-
tocol automata are compared to each other. In particular, the following questions
are addressed:

• How close do the different approaches come to the real specification?

• How do the DOPG based protocols compare to other approaches’ results?
Are they more general, equivalent, or more specialized?

• Which of the two introduced simplification steps are useful for DOPG based
protocol recovery?

111

Chapter 7 — Dynamic Protocol Recovery

No. System Lang. KLOC Component AP Inst. AMC
1 ArgoUML Java 264 ArrayList 66 346 13,817
2 ANTLR Java 38 ArrayList 2 29 1,291
3 J Java 158 ArrayList 13 37 36,426
4 ArgoUML Java 264 Stack 2 7 352
5 J Java 158 Stack 2 13 943
6 sqlite3 C 60 file handle 1 2 253
7 rhapsody+ircII C 18+49 socket 2 4 8,412

Table 7.1: Characteristics of the different components as used in the respective
subject system: number of distinct allocation points (AP), number of investigated
instances, and number of atomic method calls (AMC).

• How does the automaton difference metric compare to Lo’s metric?

7.6.1 Setup and Subject Systems

For this experiment, several Java and C applications and different components
they use are investigated. The case study concentrates on standard components:
java.util.ArrayList and java.util.Stack for Java, and the file or socket han-
dle for C. The following subject systems are used:

• ArgoUML3, a UML modeling tool (Java)

• ANTLR4, a parser generator (Java)

• J5, a powerful text editor (Java)

• sqlite36, an SQL database engine (C)

• rhapsody7 and ircII8, two console IRC clients (C)

These systems are first instrumented to produce the necessary traces. Then
the instrumented systems are executed with typical usage scenarios. From the
resulting trace files, one object trace is extracted for each instance of the regarded
component. These object traces are then used to construct the corresponding
DOPGs, which are the basis for the new protocol recovery approach. The automa-
ton learning approaches require a simpler trace that contains just the sequence
of atomic method calls. This can be easily extracted from the object trace. Based
on these two representations, protocol recovery is performed with the different
approaches. Figure 7.10 illustrates the general setup.

3http://argouml.tigris.org/
4http://www.antlr.org/
5http://armedbear-j.sourceforge.net
6http://www.sqlite.org/
7http://rhapsody.sourceforge.net/
8http://www.eterna.com.au/ircii/

112

7.6 Case Study

Trace

Object

Trace

Simple

Trace
DOPG

Protocol

Automaton

extract

constructfilter

transform.
graphautomaton

learning

Figure 7.10: Case study setup.

Table 7.1 shows which components of which applications are investigated,
how many instances occur in each case, and how often the component’s methods
are called in total. It also shows the number of distinct allocation points. For
the socket component, rhapsody’s and ircII’s traces are combined to get more
information about the general usage of a socket.

The following protocol recovery approaches and tools are applied (see Sec-
tion 7.3 for details):

• Tree: The minimized prefix tree acceptor that represents exactly the set of
original traces. This is used to evaluate the other approaches’ degree of
generalization.

• Successor: The straightforward approach of using one state per method. For
this method and for the “Tree”, I use an own implementation that addition-
ally performs automaton minimization at the end.

• k-tails: Reiss’ tool is used (with k=3), which is available as part of the Bloom
system9.

• sk-strings: The tool by Anand Raman is used (the same that Ammons uses).

• DOPG: Pure DOPG based protocol recovery with no additional simplifica-
tions. This leaves out step 5 of the algorithm from Section 7.4.1.

• DOPG-A: Based on DOPG, this one additionally applies the simplifying
transformation (a) as described in step 5.

• DOPG-B: Additionally applies transformation (b) in step 5.

This results in 7 automata per component/system that are to be compared.
Unfortunately, there is no official specification for the regarded components avail-
able. Therefore, I created the real specification of the protocol as I would expect

9http://www.cs.brown.edu/~spr/

113

Chapter 7 — Dynamic Protocol Recovery

it. The specification is based on protocol recovery results, which were manually
inspected and manipulated towards the real protocol. This real specification is
represented as an 8th automaton and used as a reference. For all these automata,
the number of states and transitions was measured to get an impression of their
size.

Each of these automata is then compared to the specification. For this com-
parison, the specification is reduced to those methods that are really used in the
respective traces. It is reasonable to do so because methods that are not called are
not visible for any dynamic analysis. The comparison is performed by applying
both introduced similarity measures: random-based precision/recall approxima-
tion, and automaton difference. Also, the correlation between these two measures
is calculated.

7.6.2 Results

Tables 7.2, 7.3 and 7.4 show the results of the study, and Figures 7.11 and 7.12
present them graphically. This section discusses the results in detail.

Automaton sizes. In Table 7.2, the sizes of the different resulting protocol
automata in terms of number of states and transitions are displayed. The sizes of
the specification and prefix tree automata are given for comparison purposes. The
table shows that all approaches reach a good compression ratio compared to the
prefix tree acceptor. However, sizes still differ in a wide range. In five out of seven
cases, the DOPG based automaton is the largest. With additional simplifications,
especially with transformation 5(b) (see Section 7.4.1), the DOPG based automata
can be reduced to a size comparable to the other approaches. Only for case 3,
the DOPG-B automaton is still very large. In summary, DOPG based protocols
appear to remain more specialized than the other approaches’ protocols.

Automaton/language similarity. Tables 7.3 and 7.4 show the results for lan-
guage and automaton comparison of each recovered protocol automaton with the
specification. For each case, the first and second columns contain the precision
and recall as calculated with Lo’s method (100,000 samples). These numbers are
visualized in Figure 7.11. The third column displays the automaton’s difference
to the specification automaton; Figure 7.12 is the corresponding chart. The last
line shows the Pearson product-moment correlation coefficient between precision
and distance (prec.) and recall and distance (rec.).

The chart in Figure 7.11 gives a good overview on the different precision and
recall measures. It is desirable to achive both high precision and a high recall.
k-tails comes closest to this for some cases, but in other cases, precision or recall
may also drop below 20%. DOPG-B delivers similar results. sk-strings, Succ,
and Tree always have a recall below 30%, whereas precision is mostly quite high.
DOPG-B seems to reach a higher recall at the price of a lower precision, compared
to DOPG and DOPG-A. Let us now look at the results in detail.

• For system/component no. 1, k-tails is closest to the specification and also
delivers a 100% recall automaton. The successor method results in a higher

114

7.6 Case Study

No. Spec. Tree Succ. k-tails PFSA DOPG DOPG-A DOPG-B
1 4:31 6k:6k∗ 19:64 3:19 42:126 233:687 232:684 20:50
2 4:17 259:273 12:18 8:12 20:40 43:61 36:46 20:28
3 3:10 34k:34k∗ 6:14 2:6 13:42 475:760 469:754 307:465
4 4:8 334:334 7:9 4:6 8:10 27:38 26:37 6:8
5 4:7 871:872 5:7 3:5 21:25 4:7 3:5 3:5
6 4:8 241:241 8:14 4:8 8:14 24:54 22:49 3:8
7 4:12 8k:8k∗ 13:33 9:19 49:73 34:80 23:50 14:30

Table 7.2: Protocol automaton sizes (states:transitions) for the different ap-
proaches. Specification and prefix tree sizes are given for comparison. The
automata marked with a ∗ have not been minimized due to memory restrictions.

No. 1 2 3
Tree 100 32 n/a 100 15 48 100 28 n/a
Succ. 87 33 30 88 15 28 83 34 30
k-tails 42 100 17 75 17 25 75 100 17
PFSA 3 29 66 93 16 33 4 25 56
DOPG 37 33 42 95 15 36 79 36 62

DOPG-A 37 32 42 80 20 34 79 36 62
DOPG-B 17 38 30 83 22 29 85 65 58
prec./rec. -75 -82 -4 -87 -40 -79

Table 7.3: Automaton/language similarities when compared to the real protocol
automaton: precision, recall, and difference. Some values could not be computed
due to memory limitations (n/a). The last line shows the correlation between
precision/recall and automaton difference (all values in percent).

No. 4 5 6 7
Tree 100 43 54 100 21 51 100 0 50 100 32 n/a
Succ. 100 44 21 75 23 10 100 1 18 89 33 26
k-tails 50 48 25 67 100 21 100 100 6 16 100 28
PFSA 100 44 22 100 21 35 100 1 18 3 29 31
DOPG 100 43 43 89 57 25 75 1 17 63 33 34

DOPG-A 100 43 42 67 100 16 75 1 17 63 33 36
DOPG-B 40 47 32 67 100 16 58 100 6 29 35 34
prec./rec. 3 -74 37 -61 24 -69 -82 -72

Table 7.4: Continuation of Table 7.3.

115

Chapter 7 — Dynamic Protocol Recovery

0

20

40

60

80

100

0 20 40 60 80 100
Precision

Re
ca

ll

Tree
Succ
k-tails
sk-strings
DOPG
DOPG-A
DOPG-B

Figure 7.11: Precision and recall of different techniques.

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7

System/Component

Di
ffe

re
nc

e
in

 %

Succ.
k-tails
sk-strings
DOPG
DOPG-A
DOPG-B

Figure 7.12: Automaton differences between specification and recovered proto-
col for different recovery techniques.

116

7.6 Case Study

precision, but its recall is not higher than the prefix tree acceptor’s. Both are
better in quality than the DOPG based protocols, but those are still better
than PFSA.

• For no. 2, DOPG has the highest precision, while DOPG-B has the highest
recall and the lowest difference to the specification.

• In no. 3, precision and recall for DOPG-B are both quite good. k-tails has a
higher recall at the price of a lower precision. However, the DOPG based
automaton is about factor 100 larger than the k-tails result.

• For no. 4, results do not vary much between the different approaches.

• In no. 5, PFSA reaches the highest precision but the lowest recall (same as
prefix tree acceptor). k-tails and DOPG-A/B have the same precision and
recall; they result in different automata of the same size. This is indicated
by the measured difference to the specification.

• In no. 6, k-tails results exactly in the specification. Most other approaches
have a very high precision and very low recall, except DOPG-B which has a
lower precision but 100% recall.

• For no. 7, the successor method has the highest precision, while k-tails
delivers the highest recall. DOPG is still better than PFSA in this case.

All in all, the results are diverse. In some cases, DOPG provides the best quality
protocol automata, but in other cases, other approaches have better results. k-
tails is often close to the specification, but also often generalizes too much. An
interesting observation is that in many cases, the approaches reduce precision
but do not increase recall. This means that generalization in these cases does not
extend the accepted language towards the specification. Instead, the automaton’s
size is reduced at the price of decreased quality.

There is no correlation between automaton difference and precision, but be-
tween measured automaton difference and recall. The correlation is in the range
from −0.61 to −0.87. This means that the more the difference to the specifica-
tion increases, the fewer allowable sequences of operations are accepted by the
automaton.

DOPG variants. Regarding the differences between the different DOPG vari-
ants, there are a few more things to observe. With an increasing degree of gen-
eralization, recall increases and precision drops. However, this is not true in all
cases. The difference between DOPG and DOPG-A is small in most cases, and
the languages accepted by the respective automata do not differ much. Only
the transformation to DOPG-B reduces the automaton’s size significantly in all
cases, also affecting precision and recall (increased recall, reduced precision). In
summary, DOPG-A does not have a great effect and can therefore be omitted in
practice.

117

Chapter 7 — Dynamic Protocol Recovery

create

empty

push

pop

empty

push

(a) Successor

create

push

empty pop push

empty

(b) DOPG

Figure 7.13: Two protocol automata for system/component no. 5 (constructor
calls omitted). The successor automaton accepts a subset of the DOPG automa-
ton’s language.

Example. Figure 7.13 shows the protocol automata for scenario 5 that result
from the successor and DOPG algorithms. The DOPG automaton allows push
and empty after an empty, which are both not allowed in the successor one. The
language of the successor automaton is completely accepted by the DOPG au-
tomaton. Both automata show that there can never be a popwithout a preceeding
empty. This example demonstrates that, although similar in size, the accepted
languages of the automata might differ.

7.7 Summary

This chapter has described a novel dynamic protocol recovery approach. Using
Dynamic Object Process Graphs as the basis, a protocol automaton is derived
by a sequence of transformations. Compared to using the traditional prefix tree
acceptor, DOPGs have the advantage of containing information about loops and
about context.

The case study showed that the approach is applicable in practice. It also
showed that the resulting automata are usually more detailed than the other
approaches’ results. They are closer to the application, which may be helpful for
program understanding. On the other hand, this is not necessarily an advantage
when the goal is recovery of the specification. However, when incorporating
simplifying transformations, the resulting protocols were often better than the
other protocol recovery approaches’ results.

Also, a new metric for comparing automata was introduced. In the case study,
this metric indicated differences between automata where other metrics did not
find any difference. On the other hand, a correlation between this metric and the
measured recall as defined by Lo and Khoo could be detected.

118

7.7 Summary

All in all, DOPG based protocol recovery is a promising approach. It pro-
vides a concrete detailed protocol, which may be adjusted to the desired level of
generalization by choosing appropriate simplifying transformations.

119

Chapter 8

Supporting Program Understanding
by Visualized DOPGs

Dynamic Object Process Graphs have been introduced as a view on a program’s
control flow graph from the perspective of a single object. This representation is
intended to provide an understanding of how a component is being used in an
application. As the case studies in Chapter 6 illustrated, such graphs may even
give a first impression of the entire application’s structure – if the investigated
object is of central concern for the application. In particular, we investigated
two IRC chat clients and found that DOPGs for the socket object give a good
impression of the application’s overall structure. A similar result was obtained
for the file handle object of a database system.

This raises the question of whether such graphs are helpful for program un-
derstanding in general, or which tasks can be efficiently supported by using them.
To shed some light onto these issues, I conducted a controlled experiment. The
design, procedure, and results of this experiment are described in the following.

8.1 Description of the Experiment

8.1.1 Hypotheses

I pose the following research questions:

• Does the availability of visualized DOPGs lead to faster answers to program
understanding questions that are in some way related to a given component?

• Are these questions answered less erroneously?

My hypothesis is that both questions can be answered positively:

H1 When DOPGs are available, program understanding questions that are re-
lated to a given component are answered faster.

121

Chapter 8 — Supporting Program Understanding by Visualized DOPGs

Rationale: DOPGs represent an application’s control flow from a single com-
ponent’s perspective. This information should be helpful for understanding how
the component is being used. The maintainer can focus on those spots in the code
that are relevant and sees their relation immediately. He does not have to browse
through a lot of code in search for uses of the component or for the connection
between these uses. DOPGs also contain call paths to the points where the com-
ponent is used, which should give a good impression about the basic structure of
relevant parts of the application. This should significantly reduce the time needed
for finding out about component-related issues.

H2 When DOPGs are used, such questions are answered less erroneously.

Rationale: When the DOPGs are suited to the given question, that is, represent
an adequate use case, they provide detailed information about the component’s
relevant use. Since they concentrate all the neccessary information, the main-
tainer should get a very good understanding of the dependencies of the com-
ponent. Consequently, he should be able to gain a deeper understanding of the
component’s use and to answer corresponding questions less erroneously.

The corresponding null hypotheses are:

H01 It does not make a difference for the response time to the questions whether
DOPGs are available or not.

H02 There is no difference between the number of errors in the answers, no
matter if DOPGs are available or not.

8.1.2 Experiment Design

In order to check these hypotheses, I let two groups of subjects solve the same tasks.
One of these groups (control group) worked with standard techniques only, while
the other group (experimental group) additionally used DOPGs. The independent
variable – the variable that is subject to controlled variation – in this controlled
experiment was the availability of visualized DOPGs. The experiment basically
has a between-participants after-only design [29]. This means that each participant
was either member of the experimental group or member of the control group.

Due to the relatively low number of participants that was to be expected, a
within-participants design – where each participant is member of each experimental
group – would have been preferable, but was difficult to implement in this case.
Giving the same program understanding task twice would obviously lead to
strong sequencing effects. It is difficult to find two different subject systems
that are equivalent with respect to the tasks, or to find two different but still
comparable tasks. Therefore, I decided to let each participant investigate two
different systems with different tasks: for one system, the participant was assigned
to the experimental group, and for the other system, he was assigned to the control
group. The order of the two systems and which of the systems had DOPGs

122

8.1 Description of the Experiment

Group Size System 1 DOPG System 2 DOPG
1a 6 Gantt yes Argo no
1b 7 Argo no Gantt yes
2a 6 Gantt no Argo yes
2b 6 Argo yes Gantt no

Table 8.1: Experimental (sub)groups and sizes: Order of systems and DOPG
availability.

available was randomly assigned for each participant. This setup results in four
combinations and therefore four subgroups as shown in Table 8.1. It can be
considered as performing two interleaved between-participants experiments.

The dependent variables measure the effect of controlled variation of the
independent variable and should help answering the research questions. In this
case, dependent variables were:

• the time needed to answer each question,

• the correctness of these answers, and

• the subjective user satisfaction/confidence/productivity.

The first variable was measured while the tasks were being performed, the second
one was determined after the experiment had finished, and the third one was
acquired through a post-study questionnaire.

Relevant extraneous variables were:

• the participant’s experience in programming and software maintenance, in
particular in Java;

• participant’s familiarity with the subject systems;

• participant’s familiarity with the Eclipse environment;

• experimenter effects: how the participants are instructed, what the experi-
menter expects from the experiment, and so on;

• instrumentation: how the dependent variables are measured.

Differences between most of these extraneous variables were cancelled out by
randomized assignment of participants to groups. Experimenter and instrumen-
tation effects and other threats to validity are discussed in Section 8.1.5.

8.1.3 Subjects

All participants were computer science students from the University of Bremen
who had already received the intermediate diploma (“Vordiplom”), which means

123

Chapter 8 — Supporting Program Understanding by Visualized DOPGs

that they had all participated in a one-year project with 5 to 7 people and de-
veloped a Java system of several thousand lines of code. Another precondition
they had to meet was basic knowledge in using Eclipse for Java development.
35 students replied to a call for participation that was sent out to all computer
science students at the University of Bremen. 27 of these participated in the ex-
periment. Two of them took part in a pilot experiment which was conducted to
adjust tasks and timing of the experiment. This left 25 participants for the main
experiment. Participation was voluntary. The participants did not receive any
valuable consideration, with the exception of their participation in a lottery. This
lottery awarded two cash prizes to two of the participants who were choosen by
lot after the experiment was finished.

As the pre-study questionnaire (see Appendix E.1) showed, the subjects had
between 1 and 10 years (one outlier had 25 years) of programming experience
(median 5, std. dev. 2.7) and between 1 and 8 years of Java experience (median 2.5,
std. dev. 1.4). 60% of the participants rated their own programming capabilities
as being “above average”. The largest system the students had worked on before
was between 1 and 200 KLOC in size (median: 17 KLOC). 21 of the students
reported maximum sizes above 10 KLOC. Half of the participants did not have
much experience in working on systems written by others, but the other half did.
The distributions of these properties were similar in the two experimental groups
(experimental/control group per system). This was the result of randomization; it
was not actively enforced (no merging).

8.1.4 Experiment Tasks

To make DOPGs available to programmers in practice, I created a DOPG viewer
Eclipse plugin. This enables the subjects to view DOPGs integrated in an es-
tablished environment. This has several advantages: the usual functions of an
integrated development environment are readily available, in particular cross-
reference capabilities, search functions, and the code browser. Also, most users
will already be familiar with these Eclipse features or a similar environment and
can work on a project as they usually do.

The plugin has the following features: load DOPG, perform a spring layout
algorithm, zoom in and out, stretch and tighten layout, pan (drag the viewport),
move nodes, find start node (start of application) and find create node (object
creation). Another very important function is the possibility to jump to the corre-
sponding source code location of a node by double-clicking on it. A screenshot of
the plugin is shown in Figure 8.2 on the right-hand side. Due to the used graph
visualization framework, the graphs look slightly different from they way they
were shown in the previous Chapters.

The choice of subject systems was performed based on the following consid-
erations:

• Complex/large enough to be realistic.

124

8.1 Description of the Experiment

System Files LOC SLOC
Jetris 12 1,885 1,527
GanttProject 475 61,892 43,100
ArgoUML 1,725 319,797 160,509

Table 8.2: Source code measures of the subject systems. Jetris was only used for
training. SLOC excludes empty and comment lines.

System Class APs nodes DOPG edges
Jetris Figure (subclasses) 14 16/21/94 21/31/144
GanttProject GanttTask 3 66/293/661 84/409/963
ArgoUML ClassDiagramGraphModel 1 167 237

Table 8.3: DOPG measures of the subject systems. The left part of the ta-
ble shows the preselected relevant class and the number of used allocation
points, and the right part contains the corresponding DOPG size measures (min-
imum/median/maximum counts).

• Application is roughly known to the participants from a user’s perspective.

• Code is unknown to the participants.

• Written in Java, since this is the language that all students are familiar with.

• Must be executable (for dynamic analysis).

I chose two subject systems which meet all these requirements: GanttProject1,
a project planning tool, and ArgoUML2, a tool for drawing UML diagrams. The
Tetris game Jetris3 was used for training. Table 8.2 shows the characteristics of
these systems. LOC is the physical lines of code, while SLOC is the number of
source lines of code as counted by sloccount4 (that is, excluding comments and
empty lines). ArgoUML is four to five times the size of GanttProject, but it also
seems to have a better comment ratio.

For each subject system, I identified one class that could be considered as
being of central concern to this type of application. For GanttProject, I chose
the GanttTask, which represents a task in a project. For ArgoUML, I chose
the ClassDiagramGraphModel, which defines a binding between the underlying
graph model and the graph editor. Finally, for Jetris, the Figure class was selected.
These selections were purely based on investigating the class names and choosing
classes that sounded promising. Table 8.3 shows the number of corresponding
allocation points (“APs”), that is, the number of locations where instances of these
classes are created.

1http://www.ganttproject.biz/
2http://argouml.tigris.org/
3http://jetris.sourceforge.net
4http://www.dwheeler.com/sloccount/

125

Chapter 8 — Supporting Program Understanding by Visualized DOPGs

(a) GanttProject

(b) ArgoUML

Figure 8.1: DOPGs from the experiment as shown by the Plugin.

126

8.1 Description of the Experiment

To extract DOPGs for the selected classes, use cases were executed for each
of the systems. For GanttProject, a project file was loaded and a task’s duration
was changed. For ArgoUML, two classes were created using the (empty) class
diagram editor. Then, they were connected by an association. Jetris was played for
about a minute. The sizes of the resulting DOPGs are also given in Table 8.3. The
extracted DOPGs are shown in Figure 8.1 to give an impression of their structure.

In order to be able to maintain an unknown system, an engineer first has to
understand it. If he is asked to extend or fix a certain feature, he first has to locate
it. Feature location is a program understanding task that involves more than just
telling a code location: the maintainer has to gain a basic understanding of certain
parts of the system as well. Therefore, this kind of task can be considered a good
representative for program understanding, and it is employed in the experiment.

The concrete tasks that had to be performed on GanttProject were the follow-
ing:5

1. GanttProject supports hierarchical tasks. Which code is responsible for
updating the length of a parent task when a child task’s duration is changed?

2. Which component is responsible for drawing the task (box) in the Gantt
diagram?

3. Which class keeps the information about dependencies between tasks?

All three tasks are related to the GanttTask class: the first and third one are about
the relation between tasks, while the second one is about drawing a task. Tasks 1
and 2 have to do with the GUI: the change of a task duration is triggered by user
action, and the task box is drawn for display to the user. The third question is
about the internal data model.

For ArgoUML, the following questions were posed:

1. Which code has to be changed to make ArgoUML show an empty sequence
diagram instead of an empty class diagram after startup?

2. How is the user’s addition of an element to a diagram (for example, adding
a class to a class diagram) implemented?

3. Which class is responsible for recording and keeping a history of selections?

These three tasks have a relation to the ClassDiagramGraphModel: The model
must be present when a class diagram is displayed or edited. Therefore, it is
involved when an empty class diagram is created (task 1). Adding an element to
the diagram must also be reflected in the model (task 2). The third task is about
selection management, which is more loosely related. All tasks have to do with
the GUI.

It should be noted that the first task is of a kind that cannot be solved by the
standard feature location technique of building the difference between two sets of

5Appendix D contains translations that are closer to the original (German) task descriptions.

127

Chapter 8 — Supporting Program Understanding by Visualized DOPGs

Introduction 10 min
Training (Talk) 15 min
Training tasks 25 min
Experimental task 1 25 min
Questionnaire 5 min
Experimental task 2 25 min
Questionnaire 5 min
Debriefing 10 min

Table 8.4: Session overview.

executed units [44, 99]: the feature is always executed and will therefore be present
in all sets.

In summary, I tried to define the tasks for the two systems in a way that makes
them similar in nature and therefore at least approximately comparable.

8.1.5 Experimental Procedure

The participants were scheduled for one of a set of seven sessions. This was
neccessary because only four identical workstations were available for the experi-
ment. Each session participant was randomly assigned to one of the four different
subgroups. This gave every participant the same 25% chance of being member
of any of these groups. Each session lasted for two hours and had a structure
as shown in Table 8.4. In each session, the participants were first given a short
introduction, followed by a training of relevant methods. This covered the gen-
eral purpose of program understanding (why it is necessary), general concepts of
static and dynamic analysis, concrete approaches such as top-down and bottom-
up program understanding or searching for key words in the code, using basic
capabilities of Eclipse, such as code browsing, and demonstrated the File (textual)
and Java (cross reference) search functions in more detail. The participants were
also trained about DOPGs, that is, their meaning, how to read and use them, and
how to use the DOPG Eclipse plugin (see Figure 8.2). This training was conducted
in approximately the same way for each participant group. This was achieved
by using identical slides and an experimenter’s handbook (see Appendix C) that
described in detail what had to be done and said. However, questions of the
participants did of course differ. Also, the experimenter was always the same
person – me.

After that, each participant executed a set of six training tasks to get familiar
with the environment and views (see Appendix D). The tasks were similar to
those that were given in the main part, but were much easier to accomplish due
to the small size of the training system. The first three tasks were in parallel
demonstrated by the experimenter. He showed how to solve each task in two
different ways: by using Eclipse search functions, and by using the DOPG plugin.

For the main part, participants were told that they should use as much time
as they needed for each task. They were not told in advance how many tasks

128

8.1 Description of the Experiment

Figure 8.2: Eclipse plugins: The left view guides the participants through the
experiments, giving information and tasks and accepting their answers. The
right view is the DOPG viewer.

would be given, and they were not allowed to go back to a previous task once
they had finished it. Before the first experimental task started, the experimenter
demonstrated the two use cases of the two subject systems which had been used
to generate the DOPGs. All participants were also told which was the chosen
relevant class for each system.

During execution of the experimental tasks, measures of the dependent vari-
ables were recorded. These measures had to be taken in exactly the same way for
each participant. I created and used an additional Eclipse plugin6 that automat-
ically led through the experimental tasks, presented the questions, and recorded
the subject’s answers and reaction times. Figure 8.2 shows how the corresponding
Eclipse view looks. After each series of experimental tasks (one system), there was
a post-study interview (see Appendix E). The session closed with a debriefing.
Among other things, participants were told at the end that they are requested not
to talk about the experiment to future participants until the series of experiments
is finished.

During each session, the screen was recorded in order to be able to clarify any
effects in the evaluation phase. Also, Eclipse events like switching views were
recorded. This information was used to assess the usage intensity of the different
views, and in particular to check whether the DOPG had really been used to
answer the questions.

8.1.6 Threats to Internal Validity

Given the described experimental setup and procedure, can we be sure that any
observed effect is only caused by the variation of the independent variable, or are
there any other extraneous variables that may have influenced the result? The
following factors should be considered:

6http://sourceforge.net/projects/exclipse/

129

Chapter 8 — Supporting Program Understanding by Visualized DOPGs

• Individual participant differences: Each subject has a different background
regarding programming and software maintenance experience. These differ-
ences should be canceled out by the randomized assignment of participants
to groups.

• Instrumentation: Measurement of the dependent variables may differ be-
tween participants. This threat was considered by automating the measure-
ment process (see Section 8.1.5).

• Session differences: The training that the different groups received may
have differed in details between sessions, although it was largely defined by
the experimenter’s handbook. There were also differences in the questions
that were raised by different groups. However, since each session had one
representative from each of the four subgroups, this effect should be canceled
out.

• Sequencing effects: The effects caused by analyzing two different systems
one after the other were equalized by counterbalancing the order of these
systems.

• Subjects’ perception: It could not be concealed that the subject of investiga-
tion were DOPGs, since this was the only unusual element in the experiment.
The participants knew which technique was being investigated, and they
could guess that this technique was invented by the experimenter. This may
have influenced their behavior or answers.

8.1.7 Threats to External Validity

There are quite a number of factors that affect the generalizability of any results.
Storey [180] discusses some of these threats in more detail.

• Program representativeness: It is unknown whether the programs chosen
for this experiment are representative for real maintenance situations or not.
However, they should be large enough to be realistic.

• Task representativeness: The experimental tasks are not necessarily repre-
sentative for real maintenance situations. Also, they were selected by the
experimenter and may be of a kind that is particularly well suited for DOPG
based analysis. Generalization to different tasks is restricted.

• Experience: The participants were all computer science students, not profes-
sional programmers. Results may be different for experienced, professional
Java programmers.

• Familiarity with the system: Being confronted with a completely unknown
system is not the common situation in software maintenance. Usually, the
system to be maintained is already well known to the maintainer. Results
can not be generalized to such a sitation.

130

8.2 Results and Discussion

visibility focus
System / Question min max avg std min max avg std

Q1 36 78 55 15 11 58 31 15
ArgoUML Q2 0 81 45 22 0 81 34 21

Q3 0 55 34 21 0 51 26 21
Q1 15 100 56 23 14 44 33 11

GanttProject Q2 3 96 64 36 2 73 31 26
Q3 34 100 60 30 22 57 41 16

Table 8.5: Relative visibility and focus time of DOPG view. The numbers (in
percent) relate to the overall time that was spent on each task. min=minimum,
max=maximum, avg=average, std=standard deviation.

• DOPG experience: DOPGs were a new concept to all participants. They
had to learn and understand this concept within a short period of time before
using them. Subjects with more experience in using DOPGs will probably
perform differently.

• Experimenter effect: The experimenter is the same person who invented
DOPGs. This may have influenced any aspect of the experiment.

• Choice of relevant classes: The decision about the relevant class was not
performed by the subjects. Would they have chosen the same relevant class,
or some other class? The results are therefore not generalizable to the case
that relevant classes are not preselected. Also, the effort for constructing
DOPGs was not taken into consideration in the experiment. DOPGs were
calculated outside the experiment.

8.2 Results and Discussion

This section presents and discusses the results of the experiment. The two subject
systems and their associated tasks are not directly comparable and are therefore
examined separately.

Let us first examine whether DOPGs have really been used. For this purpose,
the times when the DOPG view was visible or in focus were recorded during the
experiment. Table 8.5 shows the measurements. The percentages tell us that the
graphs have been used with different intensity by different subjects, but they have
been used in all except two cases. For ArgoUML Q3, one participant had already
found the answer to Q3 while working on Q2; for ArgoUML Q2, DOPGs were not
used by an experiment group member in one case – which resulted in a wrong
answer. On average, DOPGs were actively used for about 33% of the time.

131

Chapter 8 — Supporting Program Understanding by Visualized DOPGs

GanttProject ArgoUML
Q

1

0 250 500 750 1000 1250 1500

with DOPG

w/o DOPG

0 250 500 750 1000 1250 1500

with DOPG

w/o DOPG

pt = 0.813, pu = 1.000, pb = 0.812 pt = 0.031, pu = 0.011, pb = 0.035

Q
1

[c
or

re
ct

]

0 250 500 750 1000 1250 1500

with DOPG

w/o DOPG

0 250 500 750 1000 1250 1500

with DOPG

w/o DOPG

pt = 0.508, pu = 0.412, pb = 0.245 pt = 0.833, pu = 0.438, pb = 0.768

Q
1

[w
ro

ng
]

0 250 500 750 1000 1250 1500

with DOPG

w/o DOPG

0 250 500 750 1000 1250 1500

with DOPG

w/o DOPG

pt = 0.895, pu = 0.574, pb = 0.857 pt = 0.009, pu = 0.084, pb = 0.000

Figure 8.3: Statistical evaluation of dependent variable measures (response time
for question 1). Within each box, the upper barchart represents the control
group, and the lower barchart shows the experimental group’s measures. The X
axis represents the response time to question Q1 in seconds. Additionally, the p-
values for different tests are given under each barchart: t-test (pt), Mann-Whitney
U test (pu), and the bootstrap test (pb).

8.2.1 Response Time

Now, we look at response times to questions, which were measured automatically
during conduction of the experiment. The response time for each question was
not limited, and several participants needed all available time only for the first
task. Because of that, there is only complete data for the first task of each subject
system. The first task was solved by all participants, whereas response times for
the other tasks are only available for a subset of participants (see Table 8.5). Also,
the answer to the third question was in some cases already found while working
on the second question, which further distorts response times for question 3.
Therefore, a meaningful evaluation of response times is only possible for the first
task of each system.

Results are summarized as barcharts in Figure 8.3. This figure is arranged as a
matrix: The first column contains data from the GanttProject system, the second
column from ArgoUML. The first row contains barcharts for response times to
question one (Q1). This includes all answers, no matter if they were right or
wrong. The second row displays response times for correct answers only (Q1

132

8.2 Results and Discussion

[correct]), and row three contains response times for wrong answers (Q1 [wrong]).
Each box contains two barcharts: the upper one shows the control group’s data,
the lower one the experimental group’s data. Each barchart contains the following
information: the box indicates the 25% and 75% quantiles (interquartile range), the
whiskers indicate the 10% and 90% quantiles, the thick line indicates the median,
and each dot represents one data point.

On first sight, the charts show that the median response time to question 1 was
always shorter when DOPGs were present. On the other hand, the interquartile
ranges for GanttProject do not show a big difference. To find out whether the
means or medians are really statistically different from each other and not result
of pure chance, I performed several tests on the different data sets:

• Student’s t-test: This test assumes that the data is normally distributed, but
it is quite robust against violations of this precondition. We therefore apply
this test as an additional indicator even though the distribution is unknown.

• Mann-Whitney U test: A non-parametric test which only considers the
ranking of data, not absolute differences. It assesses whether two samples
come from the same distribution.

• Bootstrapping: A resampling method [43]. It takes several thousand random
samples from the original data, calculates the mean differences from those
samples, and analyzes the resulting distribution. The relative location of the
zero-crossing of the mean difference values results in the p-value.

Details about these tests can be found in Appendix F. The t-test and boot-
strapping are based on the mean, while the U test is based on the median. The
results of applying the different statistical tests are displayed below each box in
Figure 8.3 as p-values. A p-value is the probability of obtaining the observed effect
when the null hypothesis is true. All p-values result from two-sided tests. The
numbers show that only differences between means for Q1 times for ArgoUML
are statistically significant (p=3.5%) for all three tests. Also, this is true for Q1
[wrong] times (ArgoUML), according to the t-test and the Bootstrap test (p=0.9%).
All other differences between means have a high probability to occur under the
null hypothesis.

These results suggest that answer times may be faster when DOPGs are avail-
able, but it depends on the system under investigation or the task. For the first
GanttProject task, there is no significant indication that DOPGs helped, but for
the first ArgoUML task, such indication can be detected. Therefore, hypothesis
H1 is too general and must be rejected.

8.2.2 Correctness of Answers

The second dependent variable to be evaluated is the correctness of answers. Since
participants finished different numbers of tasks, we look at the share of correct an-
swers instead of absolute counts. Comparing absolute counts would additionally

133

Chapter 8 — Supporting Program Understanding by Visualized DOPGs

GanttProject ArgoUML
co

rr
ec

ta
ns

w
er

s

0 0.25 0.5 0.75 1

with DOPG

w/o DOPG

0 0.25 0.5 0.75 1

with DOPG

w/o DOPG

pt = 0.511, pu = 0.599, pb = 0.530 pt = 0.001, pu = 0.001, pb = 0.001

sh
ar

e
of

0

5

10

0 1
6

1
3

1
2

2
3

5
6 1

0

5

10

0 1
6

1
3

1
2

2
3

5
6 1

Figure 8.4: Statistical evaluation of dependent variable measures (correctness of
answers). The upper barcharts represent the control group, the lower barcharts
contain the experimental group’s data. In the histograms, black bars represent
the experimental group, and gray bars show the control group’s counters. The
X axis denotes the share of correct answers, the Y axis the number of occurences
of each value.

take into consideration response times, which we investigated separately in the
previous section. The correctness of each answer was determined by first check-
ing whether the answer (usually a source code location) complied to the sample
solution. If it did not, the code was checked manually. If it was closely related to
the sample solution, the answer was judged as correct, otherwise wrong.

Figure 8.4 shows the histograms for the share of correct answers for both
subject systems. The bars for the experimental group are black, and those of the
control group are gray. The charts reveal that there are no great differences in
share of correct answers between the two groups for GanttProject. There were
only a few more correct answers when DOPGs were available. This difference is
not significant. For ArgoUML, the difference is obvious: without DOPGs, about
60% of the participants did not give any correct answer – with DOPGs, two out of
three answers were correct (mean). These mean differences are clearly statistically
significant (p=0.1%).

Table 8.6 additionally shows the absolute number of correct and wrong an-
swers for each question and experiment group. The numbers show that the
DOPG group always performed better than the control group, except for Q3 of
ArgoUML. However, the counts for Q2 and Q3 are too low to be meaningful.
The most significant difference between experiment and control group is for Q1
of ArgoUML: while 75% of the DOPG group gave the correct answer, only 38%
of the comparison group had their answer correct. Also, for GanttProject Q3, all
answers were correct for the DOPG group, whereas for ArgoUML Q2, there was
no correct answer from the control group.

134

8.2 Results and Discussion

with DOPG w/o DOPG
System/Question correct wrong correct wrong

Q1 5 8 4 8
GanttProject Q2 3 4 3 5

Q3 4 0 2 4
Q1 9 3 5 8

ArgoUML Q2 4 6 0 8
Q3 2 3 3 3

Table 8.6: Counts of correct and wrong answers.

In summary, the results are again twofold: for ArgoUML, there is a strong
tendency towards more correct answers when DOPGs were available, while no
such difference at all can be detected for the GanttProject system and tasks. When
only looking at the ArgoUML figures, the null hypothesis can be rejected at the
0.1% significance level. For GanttProject, it definitely cannot be rejected. It is
further interesting to note that no correlation between programmer’s experience
and response times or correctness of answers could be detected.

8.2.3 Questionnaire

After performing the tasks for one subject system, each participant filled out
a questionnaire. This was requested to evaluate their subjective satisfaction,
confidence, and productivity. Among others, the following questions had to be
answered:

• “Were you able to solve the tasks efficiently?” The average answer was
“rather not”, no matter if DOPGs were available or not.

• “Are your results correct?” The average answer was “rather yes”. Again,
the availability of DOPGs had no significant influence.

The participants were also asked to rate how helpful each of the available
and relevant Eclipse features was for solving the tasks. Figure 8.5 shows the
distribution of answers to this question. Answers may be missing when the
feature has not been used. For GanttProject, ratings for the different features are
similar, no matter if DOPGs were available or not. With DOPGs, they get the
best rating of all features on average, but the Java search rating is quite close to
it. Without DOPGs, the search functions have to be used more intensively; their
rating varies. For ArgoUML, DOPGs were considered to be “very useful” when
present. In their absence, the Code browser and Java search functions were used and
found to be quite helpful, but the ratings are not as good as for DOPGs.

The findings from the questionnaire confirm our earlier findings: DOPGs
supported the ArgoUML tasks much better than the GanttProject tasks.

135

Chapter 8 — Supporting Program Understanding by Visualized DOPGs

GanttProject ArgoUML
w

it
h

D
O

PG
s

0

5

10
CB FS JS DOPG

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0

5

10
CB FS JS DOPG

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

w
/o

D
O

PG
s

0

5

10
CB FS JS DOPG

n/a

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0

5

10
CB FS JS DOPG

n/a

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Figure 8.5: Rating of different tools. CB = Code browser, FS = File search, JS =
Java search. The numbers on the X axis denote the rating: 0 = not helpful, 3 =
very helpful. The Y axis shows the number of occurences of each rating.

8.2.4 Discussion

The results are different from what I expected. When the experiment was de-
signed, tasks for the two subject systems were considered to be of comparable
difficulty. However, it turned out that participants had much more problems
with GanttProject and its tasks than with ArgoUML. This is particularly astonish-
ing when considering the fact that ArgoUML is more than four times the size of
GanttProject. Some participants mentioned that ArgoUML’s JavaDoc documen-
tation was quite helpful, so this may have been one reason. Also, each of the six
tasks was solved correctly by at least two students of each group, which means
that the tasks were not infeasible.

There may be several reasons for the different DOPG performance with Gantt-
Project and ArgoUML. The most potential reason, however, is the difference in
number, size, and complexity of the DOPGs. For GanttProject, there were three
DOPGs available, and two of them were quite large – much larger than the
ArgoUML graphs. For ArgoUML, there was only one DOPG of medium size.
Maybe the effort for choosing among several DOPGs is higher than expected,
although the best-suited DOPG was presented as first choice. Most probably, the
graph size has an important impact: if a graph is very large, it is just too hard to
work with it.

It is currently not know if this is really the reason for the different results. It is
nevertheless an interesting finding that DOPGs improve program comprehension
performance for certain tasks and systems – but for others, they do not. If I had
chosen only one of those two systems for the experiment, the outcome would
have depended only on this choice: for ArgoUML, the null hypothesis would
have been rejected, but for GanttProject, I would not have been able to reject it.

136

8.3 Summary

8.3 Summary

I designed and performed a controlled experiment to find out whether DOPGs
support program understanding. As a result, I could not reject the null hypothesis
for my research question, which means that DOPGs do not support program
comprehension in general. However, the experiment showed that it depends on
the subject system, tasks, choice of DOPG objects, and most probably on the
number, size, and structure of the DOPGs whether they are helpful or not. For
one of the investigated systems, DOPGs were clearly beneficial, while for the other
system, this was as clearly not the case.

These findings illustrate the general problems one has in designing or ap-
praising empirical studies of this kind: even if an adequate subject system and
representative tasks have supposedly been chosen, you cannot be sure what the
results would have been with a different system or different tasks. This should be
kept in mind when dealing with this kind of study.

137

Part IV

Finale

139

Chapter 9

Related Work

The work presented in this thesis is concerned with several areas in which others
have performed research before or in parallel. This includes tracing and trace
compaction techniques, dynamic program visualization, experimentation, and
protocol recovery. Also, a few approaches are comparable in nature. Those are
presented in more detail in this chapter.

9.1 Related Techniques

The first section discusses techniques that are quite closely related to Dynamic
Object Process Graphs. They either have a similar representation or extraction
technique, use related algorithms, or have similar applications.

9.1.1 Static Trace Extraction

Static trace extraction and the representation of static traces as Object Process
Graphs were first introduced by Rainer Koschke and colleagues at the University
of Stuttgart. The ideas have been investigated in depth by several students.
Hanssen [73] and Vogel [196] developed the static trace extraction technique. This
technique was later published at a conference and in a journal [45, 46].

The basic ideas from this work have heavily influenced my own work on
DOPGs. In particular, the representation of a trace as an Object Process Graph is
largely identical. I extended it by advanced concepts such as exception handling
and multithreading and provided a meta-model for it. Also, my thesis is entirely
based on dynamic analysis, whereas the analyses from Stuttgart are all static. Ap-
plications like visualization for program understanding are usually not possible
with statically extracted OPGs of real-world programs due to their sheer size (see
Chapter 5).

The main application of static tracing is protocol recovery. This is discussed in
Section 9.5.1.

141

Chapter 9 — Related Work

9.1.2 Slicing

Program slicing [207, 208] uses control and data dependencies to identify all
expressions that influence a given variable at a certain source location (backward
slicing) or are influenced by this variable (forward slicing). The variable and its
occurrence form the slicing criterion. Weiser has shown that slices correspond to
the mental model of a programmer during debugging [207].

OPG extraction is similar to program slicing in that it reduces a graph that
represents program aspects, but the information represented by the graphs differs
– and also the notion of “relevance”. For program slicing, every node reachable
via control and data dependencies is relevant. For object tracing, a node is relevant
only if it relates to one particular object.

Another big difference is the size of the resulting graphs. Empirical studies
on static and dynamic slice sizes by Harman et al. [19] report that static slicing
reduces a program to about 33% of its original size and to about 20% for dynamic
slicing. Compared to that, DOPGs reduce the CFG of a program to a much smaller
fraction – usually below 1% (see Chapter 6).

Static Slicing

As OPG extraction, slicing can be performed by means of either static or dynamic
analysis. Overviews on program slicing were published by Tip [190] and Binkley
and Gallagher [18]. Modern static program slicing techniques represent a program
as a system dependency graph [82]. A program slice is then a reduced system
dependency graph that contains only nodes relevant to the slicing criterion. When
using this representation, slicing is reduced to reachability in a graph.

Slicing has been extended to object-oriented programs by explicitly modeling
the parameter passing of the object’s attributes to its methods and by using static
pointer analyses or dynamic information to handle dynamic binding [25, 26, 108,
112, 135, 178, 179]. For example, Mock et al. [130] use dynamic points-to data
to improve static slicing. They found that slices are reduced significantly in size
only for programs that make intense use of function pointers.

Liang [112] introduced so-called object slicing, where the slices are further
reduced to the statements contained in an object’s methods. Yet, these variants
for object-oriented programs are still following the original ideas of program
slicing for procedural programs.

Dynamic Slicing

Static slicing has been complemented by dynamic slicing. A dynamic analysis
knows the concrete values of variables that have occurred. This significantly
reduces the size of a slice, which otherwise often consists of the entire program.
The idea of dynamic slicing was first presented by Korel and Laski [93, 94]. The
first approaches had very high memory requirements, so dynamic slicing could

142

9.1 Related Techniques

only be applied to small programs [2, 67]. Korel et al. [95] give an overview of the
first ten years of dynamic slicing.

Gyimóthy et al. [64] present an algorithm that is efficient in terms of memory
requirements and can therefore be applied to real-world C programs [15]. Wang et
al. [203] use compressed bytecode traces for slicing Java programs, which results in
major space savings. Apiwattanapong et al. [9] introduce a very simple dynamic
slicing technique: they regard everything that is executed after the assignment of
the slicing variable as belonging to the slice. Their studies show that this simplistic
approach is both efficient and precise, compared to other (more complex) dynamic
slicing approaches.

Dynamic slicing and DOPG extraction both have the advantage that they
reduce the size of the program to be investigated, compared to their static coun-
terpart.

Union Slices

Beszédes et al. [14, 187] introduce union slices as a compromise between static and
dynamic slicing. Static slices lack precision, and dynamic methods require the
execution of many test cases. Union slices result from the union of dynamic slices
for a set of test cases. The union of dynamic slices for all possible executions
is called the realizable slice. According to the experiments that are described in
this paper, the size of union slices is usually below 20% of the program size
for small programs (4–21 KLOC of C code), which is comparable to Harman’s
results [19]. The test cases reached a coverage of 45–68%. As expected, when
adding more test cases, slice size growth quickly decreases. This is another
example of comparison of static and dynamic analyses. When using DOPGs for
protocol recovery, different traces are also combined to get a more complete result.

9.1.3 Call Graph Restriction to a Use Case

Walkinshaw et al. [202] present an approach to reduce a call graph to those meth-
ods that are potentially relevant to the execution of a given use case. This approach
requires a set of landmark methods as input which are elicited from the scenario
specification, probably by means of a feature location technique. Then, all direct
paths through the call graph that contain all landmark methods are identified by
inducing hammock graphs between each pair of such methods. In the last step,
paths that can influence and can be influenced by the paths in the hammock
graphs are identified. This step uses intra-procedural slicing with call statements
as slicing criteria.

The reduction of the call graph using this approach is quite high. A call graph
from their case study could be reduced from 251 nodes and 719 edges to 16 nodes
and 20 edges, leaving most of the relevant information for the investigated use
case. On the other hand, precision and recall was not as good for many other
cases. The quality of the results depends on the selected landmark methods, on
the scenarios in which they are analyzed, and on the system being inspected. This

143

Chapter 9 — Related Work

is similar to DOPGs where the usefulness of the results may depend on the choice
of the investigated object. Another commonality is the reduction of a given input
dependency graph to a potentially useful subgraph.

9.1.4 Object Flow Analysis

Lienhard et al. introduce an object-centric approach called “Object Flow Analy-
sis” [113–115]. Their dynamic analysis captures how object references are passed
through the system at runtime. The creation of object aliases is explicitly recorded,
as well as the history of state evolution of these aliases. Similar to DOPGs, an
“Object Flow” represents the life cycle of an object at runtime, that is, where it is
instantiated and how it is then passed through the system. The analysis is applied
for program understanding [114], detecting feature dependencies [117] and for
unit test construction support [116].

Program understanding: The information is visualized in “inter-unit flow
views” or “transit flow views”. An inter-unit flow view shows how many objects
are transferred between two “units”. A mapping from classes to conceptual units
has to be defined manually. When the mapping is adequately chosen, this view
gives a good impression about how objects are passed between the different units.
The transit flow view shows detailed information about all objects that show up
in a given class.

Unit test construction: A “Test Blueprint”, similar to a UML object diagram,
shows which objects are used, which references between objects are accessed,
what objects are instantiated, and what side effects (modifications of attributes)
are produced in a given program run. This information can be used to create a
minimal test case that uses the same elements. A trace view is used for execution
unit selection.

Detecting feature dependencies: By tracking back aliases of an object that
is used in one feature, this analysis detects when the object originates from a
different feature and concludes that there must be a feature dependency between
the two features. Dependencies are visualized in “object dependency graphs”,
where nodes correspond to objects and edges denote object dependencies.

Whereas Object Flow Analysis focusses on the points where aliases for an
object are created, DOPG extraction follows an object through the flow of control
– no matter by which alias it is represented. Also, a DOPG always relates to one
object or to a group of objects that were allocated at the same location in the code.
Object Flow Analysis examines the passing of all objects, but could be limited to
objects of a given class only. DOPG extraction requires the selection of the objects
of interest, whereas Object Flow Analysis requires a mapping to units. However,
using such a mapping for DOPGs would also be a possibility to make large graphs
better readable. Finally, it is interesting to note that they also use a compiler and
an IRC client for their case studies, which is another commonality.

A related static approach is presented by Tonella et al. [191]. They statically
extract an object diagram based on an object flow graph construction. This graph

144

9.1 Related Techniques

contains as nodes the program locations that may hold a reference to an object,
while its edges connect two locations when there is a program statement through
which an object referenced by the first location can be assigned to the second.
This graph is calculcated incrementally using a flow propagation algorithm. The
result can be transformed to an object diagram. The results of this static analysis
are then complemented by the corresponding dynamic analysis.

9.1.5 Feature Location

Feature location is the process of locating the set of program units that implement
a given feature. There are a number of approaches that use dynamic analysis for
this task. When a feature is exhibited in a program run, the code that is responsible
for the feature must have been executed and must therefore be contained in the
trace. Dynamic analysis reduces the search space from the entire program to only
a part of it. DOPGs also have feature location capabilities. Therefore, related
feature location techniques are discussed here.

One basic idea of dynamic feature location approaches is to execute a program
twice, where one run exhibits the desired feature and the other one does not.
The difference between the traces of the two runs then contains the code that
implements that feature, or at least part of it [212, 215]. Eisenbarth et al. [44, 99, 171]
extended this idea to locate more than one feature at once by using formal concept
analysis. The result is a classification of each executed computational unit as being
relevant, conditionally specific, irrelevant, or split with respect to a given feature.
A related technique by Dallmeier et al. [37] uses differences in sequences of method
calls between passing and failing runs of a program to identify defect classes.
Eisenberg et al. [47] also perform feature location based on traces. They use
different heuristics for ranking a code element’s relevance to a feature. Similar to
Eisenbarth’s approach, they require a mapping of test cases to exhibited features.

Greevy et al. [61] use a two-sided approach for the characterization of features
and computational units and introduce measurements for both perspectives. Fea-
ture fingerprints and computational unit classes are then used to correlate features
to code. As opposed to the previous approaches, this one uses isolated feature
traces: tracing is only started immediately before the desired feature is executed,
and stopped afterwards.

Another class of dynamic feature location approaches is based on only one
trace and uses some additional technique to find the pieces of code that correspond
to a given feature. Tracing is used as a filter to reduce the search space. Liu et
al. [121] use information retrieval techniques to collect information from identifiers
and comments. The features are then located by natural language queries, which
return a ranked list of source code elements. Rohatgi et al. [163] apply dependency
graph based metrics on the trace that measure the impact of class changes to the
rest of the system. The authors’ assumption is that the smaller the impact set of a
component modification, the more likely it is that the component is specific to a
feature.

145

Chapter 9 — Related Work

A visual approach to feature location is presented by Lukoit et al. [127]. Their
“TraceGraph” visualizes online which components have been used during which
time intervals. When a user executes a certain feature, he can immediately see
which components are involved in the TraceGraph. DOPGs also support feature
location by visualization.

An approach by Safyallah et al. [166] uses a sequential pattern mining algo-
rithm (as used in specification mining, see Section 9.5.6) to identify behavioral
patterns that occur frequently in a given set of traces. From these traces, it must
be known that they all exhibit the desired feature. General functionality that is
used in every execution of any feature is identified by using the algorithm on a
larger set of different use cases.

In Chapter 6, we have seen that DOPGs also cover feature location aspects.
This is partly due to the filtering that is performed in the DOPG extraction process
– similar to the single-trace approaches. However, DOPGs are further filtered by
relevance for an object. The remaining code pieces (identified by nodes in the
DOPG) may be particularly useful for locating features that have something to do
with that object.

9.2 Tracing

Dynamic analysis is based on observations of a running system. The system must
be instrumented with code that records information about the running program
– its evolving state and/or the executed artifacts. This implies several questions:
how to instrument the code, what to instrument, and how to handle the potentially
large size of the resulting traces. This section shows how other people have solved
these challenges.

9.2.1 Instrumentation

The general alternatives for instrumentation have been discussed in Chapter 3.
The whole range of instrumentation techniques is applied in published approaches.
These techniques include source code annotation scripts [141], also in conjunction
with static analysis [89], using a preprocessor to insert tracing delegates [5], Java
bytecode instrumentation [99, 155, 210], using the Java debug interface [63, 157],
or other ways of interacting with a debugger [186]. When only method invo-
cation count information is needed, even a standard profiler can be used [44].
Recently, aspect-oriented programming (AOP) is used to insert tracing aspects
into a program [35, 62, 224]. And sometimes, several of the techniques are used
in combination [22].

The approaches also differ in the instrumentation density, or in the amount
and level of information required. The majority of approaches traces at method
level. They either only trace method entry or also method exit, and some of them
additionally trace the call site. In many cases, object allocation and deallocation
is also traced [141]. Only few approaches take method parameters [62] or return

146

9.2 Tracing

values [5, 30] into account. Thread creation, termination, and synchronization
is monitored by a number of approaches as well [155]. The program state, that
is, the current call stack [169] or program location [186], or the internal object
state [141, 218] is sometimes recorded. Very few dynamic approaches look at the
intra-procedural control flow, such as conditions [69, 186] or loops [22].

Apparently, everyone creates his own instrumentation infrastructure. AOP
is one technique that can be used for specifying instrumentation locations at a
higher level, but it is not (yet) detailed enough for every purpose. For example, in
AspectJ1, there is no way to select those locations in the code where control flow
branches. Reiss [158] sketched the requirements for a general instrumentation
framework. However, if it was realized, it could still only cover a certain class
of dynamic tracing applications. Tools like ATOM [176] allow specification of an
instrumentation, but work on a very low level, and they are restricted to a certain
hardware platform.

DOPG extraction requires a quite dense instrumentation, including attribute
accesses, control flow branches, and the like. This level of detail is hardly reached
by any of the mentioned approaches. Systä [186] and Briand [22] come closest to
this density.

9.2.2 Trace Compaction and Representation

The large size of trace files is one big issue for any dynamic analysis. For tracing
with a high density, as it is necessary for DOPG extraction, it is even more impor-
tant. Therefore, this is an important topic for DOPG extraction. A lot of research
has been conducted to find compact representations of traces. Hamou-Lhadj
provides a good introduction to the topic [68, 72].

Reiss et al. [157] describe different possibilities of reducing a trace’s size. They
present different encodings on two different levels. In a first phase, filtering and
compaction techniques are applied, and in a second phase, the data is encoded in
an attempt to infer its structure. These encodings include string compaction (rep-
resent recurring strings by a shorter id), class selection, N-level call compaction (as
used in gprof’s output), interval compaction (summarizing data that lies within a
given interval), construction of a directed acyclic graph for representing call trees,
run-length encoding of sequences, grammar-based encoding, and finite-state au-
tomata induction (k-tails algorithm). They also present a case study comparing
the compression achieved by different encodings. The presented techniques are
quite general. They cover most of the common trace compaction approaches.
Some of them have also been applied to DOPG extraction (see Section 4.1).

The presented techniques can be very effective. For example, Reiss [156]
reports that a combination of context-free grammar encoding, DAG representation
of the dynamic call tree, common subsequence detection, and run-length encoding
resulted in a lossless trace size reduction of factor 800, where gzip only reached

1http://www.eclipse.org/aspectj/

147

Chapter 9 — Related Work

factor 5. This appears to be a pretty good ratio, compared to the factor 7 that was
reached in the DOPG trace compression effort (see Chapter 4).

Hamou-Lhadj et al. [68, 71] are also concerned with trace compression. They
introduce a framework for lossless trace compression which reduces redundancy.
Their approach is based on the common subexpression algorithm. In a prepro-
cessing step, repeated sequences are run-length encoded. Then, parts of the call
tree that are identical are identified and reduced to a single representation.

Zaidman et al. [225] manage trace data volume by dividing trace data into
recurring event clusters. They use a heuristic based on the relative frequency of
events.

An alternative way to reduce the trace size is to take samples from it. Chan
et al. [24] investigate if this approach is any useful for their dynamic architecture
reconstruction tool AVID [199]. The approach further reduces the completeness
of dynamic analysis results. However, Chan et al. found that the trace samples
may be useful anyway, specially in combination with animation. For DOPGs, we
want to catch the entire lifecycle of an object, therefore sampling is not an option.

Yet another approach is to take dynamic measurements, like counts of method
invocations instead of the method invocations itself [41, 99]. However, this is only
possible if it provides enough information for the anticipated analysis. It is not
enough for DOPG extraction.

9.3 Dynamic Software Visualization

Software visualization is an active research area of its own. In this section, we
can therefore only glance at a few influential approaches to dynamic software
visualization.

One of the first approaches to dynamic visualization of object oriented systems
is presented by De Pauw et al. [141]. They introduce a general instrumentation
scheme, a protocol for communication between instrumented program and visu-
alization component, and different visualizations. Their visualizations focus on
getting an overview of relations and instantiated objects.

Lange et al. [106] describe a dynamic analysis that collects method invocation
data along with the associated objects. They use merging, pruning, and slicing
to reduce the search space. Their results are visualized in three different views:
Object view (method invocation between concrete objects), class graph (objects of
the same class are merged), and bar chart (similar to UML sequence diagrams,
shows the order of invocations).

Jerding et al. [89] create a compacted dynamic call tree to reduce the trace size.
They visualize the entire trace graphically, which gives evidence of interaction
patterns. These can be found by various pattern matching algorithms. Their
visualizations consist of an Execution Mural (similar to sequence diagrams, but
on class level) and an Information Mural (displays the entire trace for navigation).
Both of these visualize the entire trace, but are scalable to details. They also show
that their approach may be helpful for understanding the architecture of a system

148

9.4 Diagram Extraction

and locate certain components [88]. Similar to DOPGs, this approach achieves
feature location through visualization.

De Pauw et al. [142] propose to visualize a trace as an execution pattern view
instead of a sequence diagram. It is basically a graphical call tree, where objects
are represented by vertical bars. They additionally propose several interactive
techniques that let the user expand, elide, and extract execution information,
as well as a number of generalizations that basically detect recurring execution
patterns.

Richner and Ducasse [161] present an approach that is based on a logic pro-
gramming language. It combines information gained from static (inheritance,
attributes, methods, attribute access, invocation) and dynamic analysis (method
invocation). The results of a logical query are visualized as dependency graphs.

Mancoridis et al. [58] present a tool called “Gadget” that extracts the dynamic
call graph: it shows the method invocations that occured between classes during
runtime. They use clustering on this graph to present the dynamic structures in a
modular fashion that is easier to understand.

Ducasse and Lanza pioneered the use of polymetric views in Software Reengi-
neering [107]. Polymetric views visualize measurements as different properties
of geometric objects, like the dimensions of a rectangle, its color, shape, or po-
sition. They also apply this approach to dynamic measurements (“lightweight
trace”, [41]). The authors propose several assignments of measurements to prop-
erties, depending on the intended use of the visualization. Examples include
the “instance usage overview”, the “communication interaction view”, or the
“creation interaction view”.

9.4 Diagram Extraction

The visualizations from the previous section were proprietary. Meanwhile, the
Unified Modelling Language (UML) provides a widely-used standard for vi-
sualizing many aspects of software. UML diagrams can not only be used for
designing software, but also for visualizing aspects of existing programs. This
section presents approaches to reverse engineering UML diagrams.

9.4.1 Interaction Diagrams

Interaction diagrams describe how groups of objects collaborate in some behav-
ior. The UML distinguishes between sequence diagrams and collaboration di-
agrams [165]. A collaboration diagram is an object diagram that additionally
contains the exchanged messages and their order. A sequence diagram contains
the same information, but puts more emphasis on the order of messages. Se-
quence diagrams visualize the interaction by showing each participant with a
lifeline that runs vertically down the page and the ordering of messages by read-
ing down the page. When showing an exemplary instance of a use case, they are
also called scenario diagrams. Only since UML 2.0, sequence diagrams support

149

Chapter 9 — Related Work
Sequence Diagram0 2008/07/28

object3:
Class3

object2:
Class2

object1:
Class1

message2()

message1()

(a) Sequence diagram.

Collaboration Diagram0 2008/07/28

object1:Class1

object2:Class2

1: message1()

object3:Class3

2: message2()

(b) Collaboration diagram.

Figure 9.1: Basic UML interaction diagram types.

loops, conditions, and the like, which extends their range of application. Mes-
sage sequence charts (an ITU standard) are interaction diagrams that are largely
identical to sequence diagrams.

Interaction diagrams are quite easy to extract dynamically by tracing object
creation and method invocation. The problem is intelligent filtering of the infor-
mation to display – if this is not done, the diagrams become large and unmanage-
able. There are just too many objects and too much communication between them
for immediate visualization. Also, in the presence of loops, large portions of such
diagrams consist of repetitions. It is desirable to abstract from such sequences.

DOPGs are not concerned with interactions between different objects, but with
dependencies between locations in the code where one concrete object is used.
However, DOPG extraction also aims at reducing the vast amount of information
contained in a trace to a useful subset. So there are some commonalities that
suggest a discussion of interaction diagram extraction techniques – in particular,
dynamic ones.

A number of approaches use pattern matching [35, 162] or a trace similarity
metric [167] to group similar sequences of method invocations. Other automatic
techniques for the simplification of interaction diagrams include constructor hid-
ing, minimum/maximum stack depth filtering, object clustering, and getter/setter
hiding [35]. Additionally, interactive techniques such as projection to certain
objects, call compression (showing call details on demand only) [102], or zoom-
ing [35] may be used. Some of the published approaches allow examination of
object interactions while the program is running [62, 162]. Let us now look at
some interesting aspects of these approaches in more detail.

Gschwind and Oberleitner [62] provide different perspectives of object interac-
tions: use of an object, calls from an object, and how and when an object is passed
as a parameter. Cornelissen et al. [35] investigate the visualization of test suites
as scenario diagrams. Using the techniques mentioned above, they state that all
test cases of their subject system were comprehensible. However, this system
was very small (3 KLOC, 20 classes), so it is unclear whether these observations
also hold for larger systems. Jiang et al. [90] derive sequence diagrams from state

150

9.4 Diagram Extraction

machines. They use the latter for merging several traces. Merging state machines
to get a more representative picture is also used in the DOPG based protocol re-
covery approach. The approach by Salah et al. [167] tries to identify typical class
usage scenarios.

Briand et al. [21, 22] also aim at reverse engineering UML sequence diagrams.
The interesting thing about their work is that it uses a quite formal approach, and
that it traces control-flow within method bodies. The authors define two meta-
models, one for the trace and one for the sequence diagram. The transformation
from trace to sequence diagram is then performed by algorithms which are directly
derived from consistency rules that are defined between the two meta-models.
The rules are described in the Object Constraint Language (OCL). This could be an
alternative to the automaton transformation technique that is applied for DOPG
extraction.

There are also approaches to static object interaction diagram extraction. For
example, Tonella et al. [192] establish the static objects at call sites through a
context-insensitive and flow-insensitive propagation of objects created at an allo-
cator call site. The caller and callee relationship at the call site is then used to create
collaboration and sequence diagrams. Kollmann et al. [92] present an approach to
extract collaboration diagrams based on a transformation between meta-models.
Rountev et al. [164] also extract UML sequence diagrams statically. Their analysis
is based on the calculation of branch and loop successors on the control flow graph.
Wu et al. [216] address the problem of identifying certain interactions by using
graph patterns. Those are then located by a relational calculator and presented as
scenario diagrams.

A recent article by Bennett et al. [13] investigates the usefulness of different
features that are commonly used for interactive exploration of reverse-engineered
sequence diagrams. The result is that most of these features are in fact considered
useful by the users.

9.4.2 State Diagrams

Another UML diagram type that is subject to reverse engineering is the state dia-
gram. A state diagram graphically represents a finite state machine – a common
technique to describe the behavior of a system. It consists of states and transitions,
where states correspond to program states, and event-triggered transitions lead
from one state to another. In OOP, a state diagram is usually used for a single class
to show its lifetime behavior. DOPGs are represented by activity diagrams, but
those are similar to state diagrams: activities are the “state of doing something”.

The following approaches either try to reconstruct state diagrams (or finite state
machines, FSM) for program comprehension or documentation purposes, or they
aim at supporting the software design phase. Protocols in the sense of sequencing
constraints are also mostly represented as state machines; state machine inference
approaches that aim at protocol recovery are separately discussed in Section 9.5,
but are also related to state diagram extraction.

151

Chapter 9 — Related Work

Modelling Support

Koskimies and Mäkinen [101] build on Biermann’s algorithm [17] and extend it to
synthesize state diagrams from sequence charts. Sent messages become actions in
states, and received messages are mapped to transitions. The algorithm increases
the number of states step by step until all trace items can be associated to the
states. It therefore constructs a minimal state diagram.

Mäkinen and Systä [128] extend this approach by an interactive component.
It aims at preventing overgeneralization by querying the user for additional in-
formation. This approach uses an observation table that is filled based on sequence
diagram information and completed by interactive membership queries. When it
is closed and consistent, an FSM can be constructed from it. Then, the user has
to decide whether the resulting FSM is acceptable – otherwise, he must give a
counterexample, and the process starts over again.

Whittle et al. [210] propose a different technique for generating UML state-
charts from sequence diagrams. Their technique requires annotation of scenario
interactions by pre- and post-conditions on global state variables for merging mul-
tiple scenarios. These are expressed in the Object Constraint Language (OCL).
Each state in the resulting statechart corresponds to one concrete state vector (re-
sulting from the global state variables). This means that states basically have to
be defined manually.

Uchitel et al. [194] present a technique for generating labeled transition sys-
tems (LTS; basically an FSM where all states are accepting) from message sequence
chart specifications. Their approach requires a high-level message sequence chart
(hMSC) and explicit component state labeling as additional input. The hMSC
shows the transitions from one scenario to the next, but does not cover interleav-
ings between sequence charts.

Damas et al. [38] propose an interactive and incremental approach that uses
positive and negative scenarios as input. It uses the RPNI algorithm [137]
for grammar inference and extends it by interactive state merging: the system
presents scenarios to the user that have to be classified as being counter-examples
or desired behavior. The result is an LTS.

Program Understanding and Documentation

Systä [184–186] builds on Koskimies approach [101] to create state diagrams for
objects from traces. Trace information is collected using breakpoints in a debug-
ger, and trace size is reduced by string-matching based detection of repetitions
and subscenarios. State diagrams for single objects are then inferred from these
scenarios, using program location information (state boxes) to avoid overgeneral-
ization. However, only selected classes can be traced with this approach, because
the tracing overhead is very high. The commonality with DOPGs is the use of
static program location information: Systä also uses this information to identify
repeated locations in the trace, and it is used to display the location of conditions.
In contrast to DOPGs, the relation to the overall control flow of the investigated

152

9.5 Protocol Recovery

application is not revealed – the result is the internal behavior of a selected object
or method.

9.4.3 Other Diagrams

An approach by Hamou-Lhadj et al. [69] uses fan-in analysis to detect utilities.
Those are regarded as being irrelevant for the trace and removed from it, leaving
only high-level components. In continuation of this work [70], the authors add
trace summaries, which are the result of iteratively removing the routines with the
highest level of utilityhood. Additionally, manually specified known implementation
details are removed. The result is presented as a use case map (UCM), which
consists of paths, components, and responsibilities. A UCM abstracts from inter-
component communication. Therefore, UCMs do not provide a global overview
of the system. However, as for DOPG extraction, conditions have to be traced in
this approach.

Smit et al. [173] use GUI event traces for redocumenting use cases. These
traces are clustered according to the similarity of the user interface events. The
result is a kind of activity diagram (“alignment”) that shows the different steps
and alternatives during use case execution.

9.5 Protocol Recovery

The meaning and importance of protocol recovery has been discussed in Chapter 7.
Also, some of the most common approaches to regular grammar based inference
of protocols have been introduced there. This section gives a broader overview of
the related work in this field. It discusses static and dynamic techniques, grammar
inference and object state based techniques, and covers the related areas of process
and specification mining.

9.5.1 Static Trace Extraction

An extensive body of work has been performed on protocol recovery based on
static trace extraction at the University of Stuttgart. The protocol recovery ap-
proach as described in Chapter 7 largely originates from there. Koschke and
Zhang [100] give a good overview of the general idea. The details have been
investigated by several students’ theses. Heiber [74] evaluates different notations
for protocols and describes a set of transformations for protocol recovery based
on those static traces. He distinguishes between automatic (safe) transformations,
such as common prefix and suffix reduction, and semi-automatic (unsafe) trans-
formations. Among the latter is merging conditional branches with differently
labeled edges and simplification of conditional branches. His work is of rather
conceptual nature. Haak’s thesis [65] is closer to practice and describes the method
for recursion elimination that we have already seen in Chapter 7. He also presents
a few ideas for validating protocol graphs against OPGs.

153

Chapter 9 — Related Work

More recent work by Jung [91] extracts a protocol structure graph from a static
OPG. This graph contains routines and relations between them (call relation, dom-
inance relation, cycles, delegation, sequence of calls, loops, control dependencies).
The approach is based on structural analysis. It reduces the graph size to 20-50%
of the original OPG for the investigated (very small) programs. The approach
transforms an OPG to a representation on a higher level, but it does not extract a
verifyable protocol.

Vogel [197] also describes the transformation from OPGs to an FSA that we
have met in Chapter 7, but leaves out the simplification step. He measures and
compares the automaton sizes of the different steps. In contrast to my thesis,
Vogel regards read and write as the only atomic operations; this means that
the resulting automata only have these two symbols as their alphabet. He then
investigates subprotocol occurences, that is, occurences of automata that accept a
subset of the language of an automaton for a different object.

In his dissertation, Vogel [198] covers the topics structural analysis, transfor-
mation from OPG to FSA, reports and metrics on that, and protocol recovery. The
focus is on static trace extraction and its application for protocol recovery.

In my thesis, I extend the protocol recovery approach by additional simplifying
steps, evaluate how it performs for dynamically extracted OPGs, and quantita-
tively compare these results to other dynamic protocol recovery approaches.

9.5.2 Regular Grammar Inference

A commonly used technique for dynamic protocol recovery is regular grammar
inference. The problem of regular grammar inference is to induce a regular
language or its associated acceptor (FSA) from examples. The number of possible
solutions to this problem is infinite, so the challenge is to select a proper grammar
among them. Most approaches start by constructing a prefix tree acceptor – an
automaton that accepts exactly the provided set of words. This automaton is then
successively generalized by merging similar states. A classical example for an
automaton learning technique is the k-tails algorithm [17]: it merges states that
are indistinguishable in the set of accepted output strings up to a given length k.
Pure automaton learning techniques tend to overgeneralize. An approach to
preventing this is to defer the decision of whether to merge two states or not to an
expert by posing membership queries [8]. This may be done interactively by asking
the user, or automatically generated and executed test cases can help to answer
these questions.

Automaton learning is a research area of its own. The following overview
concentrates on automaton learning for protocol recovery. For this application,
the alphabet consists of a component’s methods, and the language examples are
legal sequences of method invocations. These are usually extracted by means
of dynamic analysis, that is, the calls of client applications to the investigated
component’s methods are recorded.

154

9.5 Protocol Recovery

Whaley et al. [209] use the successor method [160] for directly constructing a
protocol automaton: each state corresponds to a state-modifying method, and a
transition between two states indicates a legal sequence of method calls. This
simple construction has the drawback that only primitive sequencing constraints
can be expressed – real protocols will usually be more complex.

Ammons et al. [5] use the sk-strings automaton learning technique [152], which
merges states that are indistinguishable for their top s percent of the most probable
k-string. The result is a probabilistic FSA that is annotated with transition frequen-
cies. Infrequently traversed edges can then be removed from the automaton.
Another extension to the k-tails algorithm is presented by Lorenzoli et al. [126].
Their technique called GK-tail generates extended finite state machines (EFSMs).
EFSMs model the interplay between data values and component interactions by
annotating FSM edges with conditions on data values. In other approaches, tran-
sitions are only labelled with methods.

Walkinshaw et al. [201] apply the QSM grammar inference technique: pairs
of states that are candidates for merging are selected by the “Blue Fringe” algo-
rithm [105], and the decision of whether to merge or not is deferred to the user.
This approach results in an FSM with a good accuracy, but comes at the price of
heavy user interaction. The number of questions that need to be answered seems
to rise exponentionally with the number of states.

To improve the accuracy, robustness, and scalability of automaton learning
based approaches, Lo and Khoo [123] propose a protocol recovery architecture
called SMArTIC, which consists of four consecutive steps: First, erroneous traces
are filtered out by detecting common behavior. Next, traces are divided into
groups of “similar” traces (clusters). Then, protocol automata are generated for
each group. Using a PFSA specification miner is proposed for this step, but other
miners may be used as well. Last, the automata are merged into a single one..

9.5.3 Object State Based Approaches

A different class of dynamic protocol recovery approaches is based on object state
in the sense of the concrete values of an object’s attributes. These approaches de-
rive states from the different configurations of an object’s attributes and connect
them according to the way in which methods (that is, modifiers) change that state.
Since an attribute may have an arbitrary number of possible values, the automa-
ton states usually have to abstract from the concrete value (observer abstraction).
This can either be done automatically [36, 217] or manually by providing special
methods that explicitly indicate the state [200]. Another approach to state reduc-
tion is to regard each attribute separately (state slicing, [209, 217, 218]). Xie and
Notkin combine this approach with automatic test case generation for extensively
exercising object states [218]. Walkinshaw et al. [200] apply the same idea to
static analysis: the transitions between states are automatically extracted from the
source code by means of symbolic execution. Their technique also identifies the
paths through the code that govern a detected transition.

155

Chapter 9 — Related Work

Publication s/d add. input obs. perm. technique state
meaning

Alur [4] s safety
property

– + iGI: L* obj. state

Ammons [5] d def./users + – GI: PFSA –
Beyer [16] s – – + game obj. state
Henzinger [76] s state-

tracking
predicates

+ + abstraction
refinement
(CEGAR)

obj. state

Lo [123] d – – – clustering –
Lorenzoli [126] d – – – GI: GK-tail –
Quante [149] d – – – OPG transf. SLoc
Walkinshaw [200] s – + – symbolic

execution
user de-
fined

Walkinshaw [201] d – – – iGI: QSM –
Whaley [209] s/d – + – successor method
Xie [217] d – + – observer

abstraction
obj. state

Xie [218] d – – – structural
abstraction

obj. state

Table 9.1: Protocol recovery approaches. s/d = static/dynamic, add. input =
additional input required, obs. = uses observers, perm. = delivers permissive
interface, GI = grammar inference, iGI = interactive GI.

These approaches have the advantage that states can be meaningfully labelled,
since they directly correspond to the underlying object states. DOPG states can
also be meaningfully labelled, but represent source locations, not object states.

9.5.4 Other Static Approaches: Avoiding Safety Violations

Apart from dynamic analyses and static OPG extraction, there are a number of
other static approaches to protocol recovery.

Whaley et al. [209] propose to use static analysis on components to detect their
sequencing constraints when they have been designed to guard against misuse
(defensive programming). They locate predicates in the API’s code that control
whether exceptions are thrown, and they use constant propagation analysis to
find out where the fields (that are compared to a constant in the predicate) are set.
This simple analysis delivered a number of forbidden sequences of operations
when run on the Java standard class library. The same idea is mentioned by
Koschke and Zhang [100]: they call it glass-box understanding.

A similar, but refined approach is followed by Alur et al. [4]. Given a Java
class and a safety property (for example, an exception that shall not be thrown),
their tool answers the following question: “How is the interface to be used such

156

9.5 Protocol Recovery

that the safety property is not violated?” They use predicate abstraction to con-
struct a model and then apply a game theoretic approach for constructing the
interface. The approximation is based on automaton learning (L* algorithm) and
symbolic model checking. The learning algorithm repeatedly queries the user
with membership questions.

Henzinger et al. [76] use predicate abstraction and refinement [31]. Their
approach requires initial predicates for abstracting (safety abstraction), that is, the
user has to manually specify the set of predicates needed to track the state of an
object (similar to the object state based approaches). The goal of this approach is
to construct an interface that is not only safe, but also permissive. The interface
is safe if no call sequence violates the library’s internal invariants; the interface is
permissive if it describes all sequences that cannot lead to an error state.

Beyer et al. [16] conduct a comparison and evaluation of three different static
interface synthesis algorithms: a direct game algorithm, and two improvements
of it, namely the approaches by Alur et al. [4] and Henzinger et al. [76]. The direct
game algorithm works as follows. It first constructs the errorless automaton (that
is, the automaton that contains only those transitions that do not lead to an error
state), then eliminates all states from which all successors lead to error states
(pruning), and then minimizes this automaton. All three algorithms deliver the
same result and have the same worst-case complexity, but each one has a class of
programs for which it is fastest.

9.5.5 Recovering Algebraic Specifications

A few approaches do not recover the protocol as state machines, but as algebraic
specifications. Pre- and postconditions are another important aspect of a com-
ponent’s interface besides sequencing constraints. They can as well be used for
comprehension and automatic testing.

Henkel and Diwan [75] use method signatures to automatically generate a large
number of terms, guided by heuristics, where each term corresponds to a legal
sequence of method invocations on an instance of the class. The legal sequences
are found out by a backtracking algorithm. Their outcomes are compared, yielding
equations between terms, which are then generalized to axioms. Tillmann et
al. [189] use symbolic execution to discover axiomatic class specifications. They
identify modifier and observer methods; a modifier method’s behavior is then
summarized and expressed in terms of observer methods.

Example: requires key != null otherwise ArgumentNullException;
ensures containsKey(key);
ensures count == old(count) + 1;

A related dynamic technique is the invariant discovery by Ernst et al. [52].
It locates program invariants by monitoring the runtime state of a program and
attempting to match invariant templates to expressions. Nimmer et al. [133]
performed a comparison of this technique to the corresponding static one. The

157

Chapter 9 — Related Work

Publication s/d input pattern compl. mining method
Acharya [1] s – partial order FCPO mining
El-Ramly [48] d – sequence IPM2
Engler [50] s – fix templates internal consistency /

statistical analysis
Gabel [56] d FSA regular expr. BDD based
Li [111] s – multi freq. itemset mining
Liu [120] s – fix templates pattern matching
Lo [124] s/d QRE sequence CLIPER
Lo [125] d – sequence LS-Set
Ramanathan [153] s – sequence Apriori-all
Wasylkowski [204] s – pair freq. itemset mining
Weimer [206] s/d – pair pattern matching
Yang [219, 220] d QRE seq., |L|=2 pattern matching

Table 9.2: Specification mining approaches.

result was that the dynamically derived specifications were very close to the static
ones, even for small test suites.

All these approaches are only capable of inferring simple properties, not tem-
poral ones.

9.5.6 Specification Mining

Specification mining is the process of detecting usage or programming patterns
from the code or from execution traces. As opposed to protocol recovery, which
aims at identifying the full set of sequencing constraints for a single component,
specification mining just identifies partial constraints – for example, sequences like
(open, close). It does not necessarily cover the whole interface, and it may reveal
relations between methods of different components. Of course, the techniques
are similar and related to protocol recovery and are therefore discussed in this
section.

Sequential pattern mining was pioneered by Agrawal and Srikant [3]. Their
approach called frequent itemset mining discovers temporal patterns that are sup-
ported by a significant number of sequences. The sequences were mined on a
database of customer sales transactions, and it took a few years until the same
technique was applied to software.

The approaches differ in the complexity of patterns that they are able to detect.
They can detect sequences of length two [50, 204, 206], sequences over an alphabet
of size two [219, 220], or sequences of arbitrary length [48, 124, 125, 153]. Other
approaches recognize a set of predefined templates that are particularly useful for
detecting programming errors [50, 111, 120]. Only one approach accepts arbitrary
finite automata as the pattern [56]. An other approach delivers specifications as
partial orders [1]. Table 9.2 shows an overview of published approaches.

158

9.5 Protocol Recovery

The main application area of these approaches is finding bugs. The advantage
is that these bug finders can work automatically, without requiring any additional
input. They are based on the assumption that the majority of the code is correct. If
there are variations from the normal behavior, this is potentially a bug. However,
there are also applications in other areas of reverse engineering: El-Ramly et
al. [48] use a sequence mining approach for recovering user-usage scenarios of
GUI based programs by mining series of screen identifiers.

The approach by Wasylkowski et al. [204] focusses on single objects and is
closely related to static trace extraction. Therefore, I will discuss it in more detail.
The technique detects usage patterns from code examples and then finds violations
of these patterns, which may indicate potential errors. It starts with a state-based
model similar to the control flow graph for a method (method model). Then, an
object usage model is created by replacing all transitions that do not call a method
on the given object nor use the object as a parameter to some method by epsilon
transitions. The result is an automaton that describes how the object is used
within one method. In the next step, frequent itemset mining is used for mining
programming patterns. These patterns consist of sequences of two methods.
Then, confidence calculation and formal concept analysis is applied for selecting
violations by identifying imperfect (that is, quite similar) blocks: they are always
formed by two neighboring blocks in the lattice. The violations are finally ranked
using a uniqueness factor. This static approach has several commonalities with OPG
extraction. It starts with the control flow graph, but it is just the intraprocedural
one. It concentrates on single objects, but also on single methods. And it is aimed
at extracting specifications, but just partial ones.

Mining Specifications of Malicious Behavior

Another related field is finding a special class of specifications: those that identify
malicious behavior. This is useful for identifying programs that are infected by a
certain malware or virus.

Sekar et al. [169] use a technique similar to DOPG extraction to learn state
automata. They take into consideration the static program state (basically the pro-
gram counter) which can be extracted from the call stack. The resulting automata
represent sequences of system calls, and their states correspond to the static calling
location. The automata are used for detecting anomalous program behavior. This
is closely related to violations of a given protocol, and the idea could be regarded
as a lightweight DOPG variant. However, it only models system call sites and
their dependencies.

An approach by Christodorescu et al. [30] mines specifications of malicious
behavior by comparing traces of infected software to traces of the original soft-
ware. It analyzes def-use dependencies on parameters and return values, based
on their types and values. This results in a partial data dependence graph, which
is then constrasted with dependence graphs of benign programs. The result is a
graph that characterizes the particularities of infected programs.

159

Chapter 9 — Related Work

Schuler et al. [168] introduce a way to calculate a dynamic birthmark for Java
programs. They observe how a program uses Java Standard API objects. If
another program uses the same objects in exactly the same way, this is a sign that
the corresponding code has been copied or stolen. This is also a kind of protocol
that is used for a different purpose.

9.5.7 Process Mining

A topic closely related to protocol recovery and specification mining is process
mining. It attempts to reconstruct models of business processes by analyzing
concrete sequences of events. However, it faces a number of different challenges,
such as alternative and parallel routing or human errors in the event logs.

The seminal work on this topic is presented by Cook and Wolf [32] who focus
on discovering models of software processes. They infer finite state machines from
event sequences. Different inference techniques are compared: Markov methods,
neural networks, and grammar inference (k-tails). The markov and the grammar
inference approach showed promising results. Weijters et al. [205] propose a
heuristic approach which uses rather simple metrics to induce a dependency
graph. The advantage of the heuristic approach is that it can deal with noisy data.

For an extensive discussion and survey of issues and approaches in workflow
mining, the interested reader is referred to the article by van der Aalst et al. [195].

9.5.8 Grammar based Protocol Specification

Protocols can be specified based on a grammar. Some of the relevant approaches
are discussed in this section. However, protocol specification is not in the focus
of this thesis, so alternative specification techniques are not covered.

Regular Languages / Finite State Automata

The use of regular languages to model the dynamic behavior of objects was first
suggested by Nierstrasz’s “Regular types for active objects” [132]. Shortly after,
Yellin et al. [221, 222] proposed to specify sequencing constraints by means of
finite-state grammar. Their protocols are bidirectional: they distinguish between
send, receive, and mixed states. This allows them to define and check protocol
compatibility between two components. Another related approach to protocol
specification is the Trace Assertion Method [138] which can also be modelled
with finite automata as well [87]. Plasil et al. [144] define an architectural de-
scription language for behavior protocols that is similar to regular expressions.
It is extended by operators for specifying parallelity. De Alfaro and Henzinger
introduced the notion of “Interface automata” [40]. They argue that an interface’s
protocol should not only be safe, but also permissive, which means that they
describe all sequences that do not lead to an error. In summary, the use of regular
expressions for protocol specification is widely accepted.

160

9.5 Protocol Recovery

Context-Free Grammars

A few recent publications combine FSA with context-free grammars for check-
ing protocols. This has the advantage that the protocol can deal with recursion
(see Section 7.4.2). Hughes et al. [83] introduce interface grammars that specify
component protocols as context free grammars. They automatically generate a
component stub that implements a parser which in turn checks conformance to
the grammar. Thus, such protocol specifications can only be checked dynamically.
Zimmermann et al. [228] follow a different approach. They model the protocol
with FSA, but component use with a context-free grammar. Then they present an
algorithm for statically checking L(G) ⊆ L(A) for a CFG G and an FSA A.

9.5.9 Protocol Validation

When a protocol of a given component has been extracted, it may be used for
checking if a client application uses the component correctly. Doing this check
dynamically is easy: the state of the FSA is simply updated as the component’s
methods are called. When the FSA gets into an error state or a transition is not
supported, an error has been detected. Checking correct use of the protocol stat-
ically is more difficult. We present some approaches to static protocol validation
in the following.

Olender and Osterweil [136] use a data-flow framework in which state tran-
sitions are propagated through the control flow graph. This allows checking
for existentially quantified constraints. Their approach can only be applied for
parameterless routines. Therefore, if operations relate to objects, this technique
cannot be applied directly. OPGs remove parameters from operations, since all
operations relate to one particular object – so they may be used as input to this
approach.

Butkevich et al. [23] introduce a Java language extension for specification
of sequencing constraints. The order in which the methods of a class may be
called is specified by a labeled transition system which describes an NFA by regular
expressions and states. These constraints can be checked statically. Additionally,
state predicates allow extended checks during runtime by choosing among branches
of the NFA.

Engler et al. [49] use programmer-written compiler extensions that check a
given rule. This mechanism is called “meta-level compilation”. The rules are
formulated in a state-machine language called metal. The authors claim that their
approach has detected hundreds of errors in real-world systems.

Holger Bär [10, 11] proposes another static approach to verification of com-
ponent protocols. He extracts the usage protocol from the code (this is related
to static trace extraction) and then checks whether the language of the resulting
automaton is a subset of the specified protocol. He uses extended automata for
which the allowance of transitions may depend on the return value of a boolean
function of the component. This somewhat increases the expressiveness of the
regular language.

161

Chapter 9 — Related Work

All these approaches can be used to check if a given program uses a component
correctly, if the protocol of that component is available.

9.6 Experimentation in Software Engineering
Experimentation as a means for testing or disproving theories is essential for
disciplines such as physics or medicine. However, as noted by Basili [12], it has
long been widely ignored in Software Engineering. Only during the last ten years,
there has been an increased interest in this topic. This section summarizes some
of the published work. Since the field is quite large meanwhile, it concentrates on
a few representative overview articles and books.

An elaborate book about experimentation in Software Engineering has been
written by Lutz Prechelt [145]. It contains many examples, discussion of published
experiments, and useful hints. Unfortunately, it is written in German, and it is out
of print. Another German book on the topic is Andreas Zendler’s professional
dissertation [227], which contains an overview of historical experimental Software
Engineering results and a methodology for conduction of such experiments.

There are a number of surveys on experimentation in Software Engineering.
Sjøberg et al. [172] identify 113 controlled experiments in 5,453 articles and con-
ference papers on Software Engineering. 87% of the experiments’ subjects were
students, and only 9% were professionals. Commercial applications were used
in 14% of the experiments. Höfer et al. [79] investigate the articles of one journal
only (Journal of Empirical Software Engineering). They find that professionals
are used as subjects in 78.9% of the case studies, but controlled experiments are
mostly conducted with students (60%). Another survey by Tonella et al. [193] et
al. concentrates on empirical studies in reverse engineering. It reports that of 260
papers and articles on the topic, 24.6% did not provide any empirical evidence at
all. Another 53.4% contained only case studies or experience reports. 21.8% had
an evaluation which controlled the setting (quasi-experiments, controlled exper-
iments, and observational studies). Only seven papers or articles reported from
a controlled experiment. In summary, controlled experiments are still widely
neglected in Software Engineering research.

Rajlich et al. [151] state that program comprehension is a research area where it
is feasible to validate one’s claims with relatively inexpensive experiments. They
propose to measure accuracy, accurate response time, and inaccurate response
time, which is pretty close to the dependent variables in the DOPG experiment
(Chapter 8). Ten years later, Di Penta et al. [143] give a good overview of empirical
studies on program comprehension and the problems associated with it. They
also cite a lot of examples where empirical studies in the context of program
comprehension have been conducted.

The experiment as described in Chapter 8 is also inspired by Storey’s publica-
tions [181, 182]. Although her work focusses on evaluating interfaces of reverse
engineering tools, many of the ideas can be applied to related areas. For the DOPG
experiment, the focus was not on the interface, but on the usefulness for program
comprehension and maintenance.

162

Chapter 10

Conclusions

This chapter summarizes the contributions and conclusions of this thesis and
proposes further research directions.

10.1 Summary and Conclusions

This thesis introduced Dynamic Object Process Graphs, along with techniques
for their extraction and their applications. Dynamic Object Process Graphs are a
projection of the control flow graph to those nodes and edges that are relevant
for one particular object. They summarize dynamic operations sequences for this
object, representing loops and control dependencies. This representation of an
object trace overcomes the space problem of traditional tracing, which is caused
by the creation of huge traces for longer program runs. Dynamic Object Process
Graphs are limited in size, and we have seen that it is possible to construct them
on-the-fly while the program is running.

In several case studies, the behavior of different components was extracted
as Dynamic Object Process Graphs. These graphs can help to understand how a
particular component is used in an application. If the component is a key com-
ponent of the application, its Object Process Graphs may give an overall picture
of the application and help to understand the system as a whole. On average, the
Dynamic Object Process Graphs for these components were less than 1% of the
size of the global static control flow graph. This reduction shows the potential
for extracting the relevant information from an otherwise huge information space
spanned by all possible behavior.

Dynamic Object Process Graph extraction is an enabling technique similar to
program slicing with applications in program comprehension, testing, and pro-
tocol recovery. Its feasibility and use was demonstrated in several case studies
with non-trivial programs. The application of DOPGs for protocol recovery was
described in detail, and the comparison to other dynamic protocol recovery tech-
niques showed that DOPGs are a good basis for that: it often delivers better results
than the other techniques.

163

Chapter 10 — Conclusions

Also, the use of DOPGs for program understanding was investigated. A
controlled experiment was conducted to find out whether DOPGs are useful for
program understanding or not. The results were not absolutely clear: for one
system, it was clearly useful, but for another program, it was not. The conclusion
is that this is most probably due to the different sizes of DOPGs: they only seem
to be usable when the graph is not too large.

Now let us look back at the hypotheses that were stated at the beginning of
this thesis in Section 1.2.

Hypothesis 1: OPGs can be extracted dynamically (feasibility). Based on the
case studies in Chapters 4 and 6, this first hypothesis can clearly be confirmed:
dynamic OPG extraction is possible, and it is applicable in practice. This was
shown even for large and interactive systems. The choice of extraction technique
(online versus offline) depends on the number of objects that is to be traced. For
single or few objects, the online technique is faster, but for many or all objects, the
offline technique should be used. However, there may be cases where dynamic
OPG extraction is not possible, for example when timing is critical, which is
affected by instrumentation. Also, execution may be difficult in the embedded
domain. This is where using the corresponding static analysis may still be an
option.

Hypothesis 2: DOPGs are a good basis for protocol recovery. Chapter 7 ex-
plained in detail how DOPGs can be transformed to protocol automata. The ap-
proach was implemented and compared to a number of other dynamic protocol
recovery techniques. In this comparison, DOPG based protocol recovery deliv-
ered good results that often were better than other approaches’ results. Therefore,
this hypothesis was as well confirmed.

Hypothesis 3: Visualized DOPGs can be helpful for program understanding.
The fact that DOPGs can be helpful for program understanding was also con-
firmed by the case studies in Chapter 6 and the controlled experiment in Chap-
ter 8. However, it could not be shown that DOPGs are always useful for program
understanding. Also, the cases when they are useful for which tasks could not
be conclusively identified. We just collected evidence that DOPGs are useful in
certain cases, and we got some hints about the conditions for that.

10.2 Opportunities for Future Research

During the research on this topic, a number of continuative items and ideas
that could be worth investigating have been identified. They are presented and
discussed in this section.

164

10.2 Opportunities for Future Research

10.2.1 Identifying Appropriate Objects

An open question is how to find objects that deliver the information that is desired.
Of course, this depends on the goal of the analyst: if the goal is protocol recovery,
this choice is straight-forward. But when the goal is to get an initial overview of
the whole system, the choice may not be obvious. In my case studies, I was quite
successful in identifying adequate objects based on their name and some trial and
error. However, an automatic technique that identifies good candidates would be
helpful.

One approach that could be worth trying is using a webmining metric. Zaid-
man et al. [223, 224, 226] applied such a metric on runtime coupling information
and reported good results for identifying key classes of a system. The advantage
of using a webmining metric is that it takes transitive dependencies into account.
The question is if Zaidman’s key classes are of a kind that is also relevant for
DOPG extraction.

10.2.2 Combination with Feature Location

Another kind of dynamic analysis is the feature location approach as described
by Eisenbarth, Koschke, and Simon [44]. They use concept analysis to classify
routines as specific, conditionally specific, relevant or irrelevant for a given feature.
The same approach also works on basic block level [99]. However, the resulting
concepts are quite fine-grained and often distributed throughout the code.

Dynamic tracing can be combined with that approach. Instead of looking at
routines or basic blocks, one could use nodes and edges of the Dynamic Object
Process Graph as executed units. Concept analysis then tells us which nodes and
edges are specific, relevant, and so on for each feature. The advantage would be
that the results are much more readable than sets of basic blocks, since we will
usually get contiguous sequences of operations (that is, connected nodes) for a test
case. In contrast to that, basic blocks may be distributed throughout the program,
and their relationships may not be easily comprehensible. Another advantage is
that DOPG level result are more detailed than routine level information, because
DOPG nodes correspond to individual statements. Also, concept analysis could
help to make large DOPGs more readable by restricting them to certain features.
This could lead to a good compromise between completeness and readability.

10.2.3 Layout Algorithms for DOPGs

In the context of this thesis, only rudimentary layout algorithms (spring embed-
der) and some manual postprocessing were applied for visualization of DOPGs.
However, it could be beneficial to create advanced layout algorithms that are par-
ticularly suited to DOPGs. A better layout may even further improve the usability
of DOPGs for program comprehension. The effect of the layout on helpfulness for
program comprehension could as well be investigated by a controlled experiment.

165

Chapter 10 — Conclusions

There are several possibilities for improving the layout for DOPGs. For exam-
ple, nodes that belong to the same function could be grouped together and marked
by a common background color. Functions that are called from many places could
be moved to a central location, or maybe also duplicated. The direction of control
flow could be visualized by a top-down or left-to-right order of the nodes. The
layout algorithm could also handle the typical structures of DOPGs (such as call
chains) in a specialized way.

10.2.4 Improving Protocol Recovery

Transition Order and Counts

Information about transition order and transition counts is currently not evalu-
ated in the analysis. This data could help to further improve protocol recovery
results. Cases where a loop body always contains only one relevant method call
or attribute access for an object (as shown in Figure 7.6) could be handled better
this way. On the other hand, since dynamic analysis is hardly ever complete, this
could lead to different errors: maybe in some special cases, there can be more than
one relevant operation.

Context Sensitivity

Another source of generalization is the missing context sensitivity. Adding context
sensitivity would improve the precision of protocol recovery results. However, for
program understanding purposes, it is probably better to use the smaller context-
insensitive graphs. This is because larger graphs are harder to understand, and
because it may be confusing to have multiple nodes for the same source location.
See Section 7.4.3 for a discussion of the effect of these extensions.

10.2.5 Using Concurrency Information

It may also be useful to include information about threads, locks, and the like
in DOPGs. For example, Java’s synchronization behavior could be additionally
traced and transformed into the DOPG. Visualizing the information which thread
executed which statements and which thread locked which objects could help
to identify concurrency problems. When several objects are involved, DOPGs
could also be extended to display more than one object at once by overlaying their
graphs. The common synchronization points may indicate potential conflicts. If
the involved objects (or their classes) are known, this may help in the investigation
of concurrency problems.

10.2.6 Online Visualization

Online tracing was introduced to avoid writing large trace files. However, it has
more advantages than that: it also enables online visualization of intermediate

166

10.2 Opportunities for Future Research

results. In particular, the current raw graphs can be transformed to DOPGs from
time to time (say, every second) which can then be visualized while the program
is running. Such an online visualization has been prototypically implemented
and delivers interesting results. It shows how a DOPG evolves when features of
the subject system are executed. However, this technique was not investigated
any further.

One idea for improving the usefulness of this visualization is to remember the
time of last execution for each node or edge. Recently visited nodes could then be
shown bright and slowly fade out until they are executed again. This could give
an even better impression about which parts of the DOPG are currently active.
Similarly, node execution counts could be visualized.

Another related idea is to allow offline visualization of the evolving graph.
Such a tool could be used as a kind of graphical debugger to follow the flow of
control through the graph. This could be particularly useful in conjunction with
concurrency information, as proposed above.

10.2.7 Product Line Consolidation

When several variants of a software that originate from the same code base are to
be consolidated, the question is where they differ. To create a product line from
these variants, the differences have to be unified using variation points.

DOPGs or protocol automata may be useful for finding these points. By
comparing the DOPGs for the same object from two software variants, the point
where behaviour differs can be identified and proposed as a potential variation
point. A similar idea was proposed by Cornelissen et al. [34], who work directly
on the traces.

The topic of DOPG based identification of variation points is currently being
investigated by Bernhard Scholz in his diploma thesis at the University of Bremen.

10.2.8 Criteria for Usefulness

The question when DOPGs are useful for which program understanding tasks
could not be answered conclusively by the experiment from Chapter 8. However,
the experiment showed up some directions for further investigation of this ques-
tion. The results indicated that the usefulness probably depends on the graph
size and on the number of extracted graphs. Another experiment could examine
a corresponding hypothesis. Yet, there may also be other factors that affect the
results. For example, it may depend on the structure or architecture of the subject
system if DOPGs are useful for its analysis. Therefore, clarification of this question
is difficult; probably, numerous experiments would be required to solve it.

167

Chapter 10 — Conclusions

10.3 Closing Words

Work on this thesis started with the need to create a dynamic counterpart for
“Static Trace Extraction” [46]. However, as work on the dynamic technique pro-
gressed, Dynamic Object Process Graphs turned out to be much more than a
counterpart. Completely new application potentials were discovered and investi-
gated, such as online construction and visualization for program understanding.
And, as the previous section showed, DOPGs pave the way for many other uses.
Dynamic Object Process Graphs and their extraction is therefore an enabling tech-
nique. I hope that the technique and results will be useful as a basis for further
research, which may come up with additional exciting applications of DOPGs.
The potential is immense. Hopefully it will be employed.

168

Appendix A

Finite State Automata

This section formally defines finite state automata and contains some algorithms
on automata that are needed in the thesis, in particular in the protocol recov-
ery chapter. Details can be found in the book “Introduction to Automata Theory,
Languages, and Computation” by John Hopcroft et al. [81].

A.1 Basic Definitions

A deterministic finite state automaton (DFA) is defined as the quintupel

A = (Q,Σ, δ, q0,F)

where Q is a finite set of states, Σ is a finite set of input symbols, δ : Q × Σ → Q
is the transition function, q0 ∈ Q is the start state, and F ⊆ Q is the set of final or
accepting states. The transition function δ may be only partially defined, that is, it
may be undefined for certain combinations of Q and Σ.

A non-deterministic finite state automaton (NFA) is defined as a DFA where
the transition function maps to sets of states instead of a single state: δ : Q×Σ→ 2Q

A transition on the empty string is called an epsilon-transition. The empty
string is denoted ε. For a DFA, δ(q, ε) = q ∀q ∈ Q.

The extended transition function describes what happens when we start in
any state and follow any sequence of inputs. For a DFA, it is defined like this:

δ̂(q, ε) = q
δ̂(q,w) = δ(δ̂(q, x), a) ∀x ∈ Σ+, a ∈ Σ, w = xa

The corresponding NFA definition is:

δ̂(q, ε) = {q}

δ̂(q,w) =

k⋃
i=1

δ(pi, a) ∀x ∈ Σ+, a ∈ Σ, w = xa

169

Chapter A — Finite State Automata

with δ̂(q, x) = {p1, p2, . . . , pk}

The accepted language L(A) of an automaton A is defined as the set of continuous
transition sequences that start in the start state q0 and end in an accepting state:

L(A) = {w ∈ Σ∗ | δ̂(q0,w) ∈ F}

A.2 Algorithms

A.2.1 NFA to DFA: The Subset Construction

Given an NFA N = (QN,Σ, δ, qN,FN), the subset construction constructs a DFA D
that accepts the same language as N:

D := (QD,Σ, δD, {qN},FD)

with ∀S ⊆ QN, a ∈ Σ : δD(S, a) :=
⋃
p∈S

δN(p, a)

QD := 2QN , FD := {S ⊆ QN|S ∩ FN , ∅}

Usually, the number of reachable states of D is much smaller than 2|QN |. The
subset construction is therefore calculated using lazy evaluation – calculating only
those transitions that are really needed. Figure A.1 shows the basic algorithm for
calculating QD and δD.

QD := {{qN}}; T := ∅
while QD \ T , ∅ do

select S ∈ QD \ T; T := T ∪ {S}
foreach a ∈ Σ do

R :=
⋃

q∈S δN(q, a); QD := QD ∪ {R}; δD(S, a) := R

Figure A.1: Subset construction with lazy evaluation.

A.2.2 The Union of two Automata

Given two automata AL = (QL,ΣL, δL, qL,FL) and AM = (QM,ΣM, δM, qM,FM), the
automaton that accepts the union of both automata languages – the union au-
tomaton – can be constructed in the following way:

AU := (QU,ΣL ∪ ΣM, δU, q0,FL ∪ FM)
with QU := QL ∪QM ∪ {q0}

δU := δL ∪ δM ∪ {(q0, ε) 7→ {qL, qM})}

170

A.2 Algorithms

Input : a DFA AL = (QL,Σ, δL, qL,FL)
Output: a DFA AM = (QM,Σ, δM, qM,FM) with L(AL) = L(AM)

and |QM| is minimal

// find out all distinguishable pairs of states
R := {{p, q} | p ∈ FL, q ∈ QL \ FL}

while ∃p, q ∈ QL, a ∈ Σ : {δL(p, a), δL(q, a)} ∈ R do
R := R ∪ {{p, q}}

// find out all sets of equivalent states
S := {{p, q} | p, q ∈ QL} \ R
while ∃P,Q ∈ S : P , Q and P ∩Q , ∅ do

S := ((S \ P) \Q) ∪ (P ∪Q)

// merge the states of each set S
QM := S ∪ {{q} | q ∈ QL \

⋃
T∈S T}

FM := {T ∈ QM | T ∩ FL , ∅}
qM := the T ∈ QM with qL ∈ T
δM(T, a) := V ∈ QM such that ∃p ∈ V : δL(q, a) = p for T ∈ QM, a ∈ Σ

Figure A.2: Table-filling algorithm for calculating a DFA with a minimum num-
ber of states. R contains pairs of distinguishable states (and could be represented
by a table), S contains pairs of indistinguishable states.

A.2.3 Automaton Minimization

Two states p and q of a DFA are equivalent if:

∀w ∈ Σ∗ : δ̂(p,w) ∈ F ⇔ δ̂(q,w) ∈ F

Two states that are not equivalent are called distinguishable. The minimization of
an automaton with respect to its number of states is equivalent to removing all
states that are equivalent to some other state. The algorithm that achieves this is
called the table-filling algorithm by Hopcroft et al. and presented in Figure A.2.

A.2.4 Product Automaton

Given two automata AL = (QL,Σ, δL, qL,FL) and AM = (QM,Σ, δM, qM,FM), the prod-
uct automaton AP is the automaton that accepts L(AL) ∩ L(AM). It is constructed
as follows:

AP := (QL ×QM,Σ, δ, (qL, qM),FL × FM)
with δ((p, q), a) := (δL(p, a), δM(q, a)) ∀p ∈ QL, q ∈ QM, a ∈ Σ

Usually, not all of the |QL| · |QM| states are reachable. As in the subset construction,
lazy evaluation can be used to reduce the calculation to only reachable states. The

171

Chapter A — Finite State Automata

algorithm is shown in Figure A.3.

QD := {(qL, qM)}; T := ∅
while QD \ T , ∅ do

select s ∈ QD \ T; T := T ∪ {s}
foreach a ∈ Σ do

if δL(p, a) is defined and δM(q, a) is defined then
r := (δL(p, a), δM(q, a))
QD := QD ∪ {r}; δD(s, a) := r

Figure A.3: Product automaton calculation with lazy evaluation.

172

Appendix B

Graph Transformation Basics

This section gives a quick introduction to graph transformations. More details
can be found elsewhere [6, 103].

Let Σ be a set of labels. A multiple directed labelled graph over Σ is a system
G = (V,E, s, t, l) where V is a finite set of nodes, E is a finite set of edges, s, t : E→ V
are mappings assigning a source s(e) and a target t(e) to every edge in E, and
l : E → Σ is a mapping assigning a label to every edge in E. An edge e in G
goes from the source s(e) to the target t(e) and is incident to s(e) and t(e). The
components V, E, s, t, and l of G are also denoted by VG, EG, sG, tG, and lG,
respectively. The set of all graphs over Σ is denoted by GΣ.

A graph G ∈ GΣ is a subgraph of a graph H ∈ GΣ, denoted by G ⊆ H, if
VG ⊆ VH, EG ⊆ EH, sG(e) = sH(e), tG(e) = tH(e), and lG(e) = lH(e) for all e ∈ EG.

For graphs G,H ∈ GΣ, a graph morphism g : G→ H is a pair of mappings gV :
VG → VH and gE : EG → EH that are structure-preserving, i. e. gV(sG(e)) = sH(gE(e)),
gV(tG(e)) = tH(gE(e)), and lH(gE(e)) = lG(e) for all e ∈ EG.

For a graph morphism g : G→ H, the image of G in H is called a match of G in
H, i. e. the match of G with respect to the morphism g is the subgraph g(G) ⊆ H
which is induced by (g(V), g(E)).

A graph transformation rule r = (L ⊇ K ⊆ R) consists of three graphs L,K,R ∈
GΣ such that K is a subgraph of L and R. The components L, K, and R of r are
called left-hand side, gluing graph, and right-hand side, respectively. When the
gluing graph is a set of nodes, the graphical representation of r may omit the
gluing graph K by depicting only the graphs L and R, with numbers or symbols
uniquely identifying the nodes in K. In this thesis, gluing graph nodes are filled
with gray.

The application of a graph transformation rule to a graph G consists of re-
placing a match of the left-hand side in G by the right-hand side such that the
match of the gluing graph is kept. Hence, the application of r = (L ⊇ K ⊆ R) to a
graph G = (V,E, s, t, l) comprises the following three steps (in the single-pushout
approach):

173

Chapter B — Graph Transformation Basics

1. Choose an occurence of the left-hand side L in G by choosing a graph
morphism g : L→ G.

2. Check the application conditions.

3. Remove the occurence of L up to the occurence of K g(K) from G as well as
all dangling edges, i. e. all edges incident to a removed node. This yields the
context graph Z of L which still contains an occurence of K. Z = G ⊆ (g(L) ⊆
g(K))

4. Glue the context graph D and the right-hand side R according to the oc-
curences of K in Z and R. That is, construct the disjoint union of Z and
R and, for every item in K, identify the corresponding item in Z with the
corresponding item in R. This yields the gluing graph H = Z + (R − K, g)
where (R − K, g) = (VR \ VK,ER \ EK, s′, t′, l′) with
s′(e′) = sR(e′) if sR(e′) ∈ VR \ VK and s′(e′) = g(sR(e′)) otherwise,
t′(e′) = tR(e′) if tR(e′) ∈ VR \ VK and t′(e′) = g(tR(e′)) otherwise, and
l′(e′) = lR(e′) for all e′ ∈ ER \ EK.

L ⊇ K ⊆ R
↓ g ↓ d ↓ h
G ⊇ Z ⊆ H

The application of a rule r to a graph G is denoted by G ⇒r H where H is
a graph resulting from an application of r to G. A rule application is called a
direct derivation, and the iteration of direct derivations G0 ⇒r1 G1 ⇒r2 . . .⇒rn Gn

(n ∈ N) is called a derivation from G0 to Gn. The derivation from G0 to Gn can
also be denoted by G0 ⇒

n
P Gn where {r1, . . . , rn} ⊆ P, or by G0 ⇒

∗

P Gn if the number
of direct derivations is not of interest. The string r1 . . . rn is called an application
sequence of the derivation G0 ⇒r1 G1 ⇒r2 . . .⇒rn Gn.

174

Appendix C

Experimenter’s Handbook

The Experimenter’s Handbook was written to ensure that all sessions are per-
formed identically, or at least as similar as possible. In particular, each participant
has to receive the same information in the same way in order to ensure that any
session difference does not influence the results. The handbook provides some
consistency and control over the running of each experimental session.

The handbook was originally written in German and was translated to English
for reproduction in this thesis.

C.1 Introduction

This Experimenter’s Handbook describes in detail how the experimenter has
to proceed during an instance of the experiment. The different phases of the
experiment are to be followed precisely as described in this handbook. Use it as
a checklist to ensure you followed each step.

Material

The following documents and things have to be prepared for each participant.
They have to be handed over to the participant at the very beginning of the
experiment.

• 1 Pre-test questionnaire

• 2 Post-study questionnaires

• DOPG legend printout

• A pencil

The following software has to be installed and configured on every worksta-
tion:

• A digital clock that displays seconds

175

Chapter C — Experimenter’s Handbook

• Eclipse 3.2.2

– Larger editor font, activate line number display

• Plugins for DOPGs and experimental procedure (exclipse)

• Three Eclipse workspaces, each containing one of the subject systems, ac-
cording to the (randomly assigned) group

• Each workspace must contain the correct tasks for the group

• recordMyDesktop for recording screen contents

On the experimenter’s laptop, the same Eclipse environment has to be in-
stalled. It must also contain the training slides. You further need four cards with
the numbers 1 to 4 on it (for random group assignment).

Phases

The experiment consists of the following phases:

1. Welcome, orientation (10 min.)

2. Training talk (15 min.) and practice (25 min.)

3. Experimental tasks and questionnaires (2×[25+5] min)

4. Finishing (Debriefing, 10 min.)

Each phase has a certain time limit which must not be exceeded. First, all
participants are welcomed and introduced to the experiment. The training phase
gives the users the required skills in program understanding, Eclipse, how to use
the relevant functions, the meaning of DOPGs, and how to use the two plugins.
The practice part allows the participants to practice the techniques and tasks using
a small software system and a set of practice tasks. In the following phase, the
users solve a set of tasks on a given subject system and complete a post-study
questionnaire. This phase is repeated with a different subject system and tasks.
The finishing phase involves a short informal discussion.

Rules

The following general rules are to be followed:

• The experimenter is not allowed to help the participants in how to solve a
task.

• The experimenter may answer simple questions about the tools.

176

C.2 Phase 1: Welcome & Introduction

C.2 Phase 1: Welcome & Introduction

• Randomly assign the participants to the workstations.

• Let each participant randomly draw one card (out of four) that determines
which group he/she will be in.

• Configure the workstation for the respective group: ./configure [1-4]
This will configure the workspaces and tasks for this group and start screen
recording.

• Start Eclipse. Workspace ws0 is automatically selected.

• Let each participant fill out a pre-study questionnaire. Make sure that all
questions are answered.

• Introduce the experimenter (yourself).

• Tell the participants what the experiment is about: “Evaluate the suitability
of different tools for program understanding.”

• Present general conditions and ask participants if these are okay with them
(otherwise they cannot participate):

– All data is collected anonymously and kept in confidence.

– The results of the experiment will be published.

– All user interactions and screen contents are being recorded.

• Tell them that a technique is being evaluated, not the participants.

• Tell them that it is not necessary to solve all tasks that will be presented.
Each participant shall invest as much time as needed for each task and only
then proceed to the next task.

• Tell them to turn off their mobile phones.

• Tell them that their performance in the experiment is independent from
the lottery. The lottery is performed among all participants in a purely
random way, and each participant has the same chance of winning a price –
independent from their experimental results.

• Give an overview of the different phases and their duration (first slide of
presentation).

177

Chapter C — Experimenter’s Handbook

C.3 Phase 2: Training and Practice

In this phase, you give an introduction to program understanding in general and
how it can be accomplished with Eclipse standard features. Apart from that,
there is an introduction of how to use the two Eclipse plugins and the meaning of
DOPGs (how to read and use them).

The first part is of theoretical nature and provides the participants with knowl-
edge they may require for the experiment. There is a presentation (slides) available
that is to be used for this training. It covers the following topics:

• Why program understanding is important, and why we need tool support.

• Basic techniques: Static and dynamic analysis; concrete examples like textual
search, cross reference tools, debugging.

• Introduction to Dynamic Object Process Graphs – their meaning, how they
are constructed, and what kinds of the different nodes and edges there are.

• Description of the maintenance scenario.

Then, the participants have some time for practicing. The Jetris system and
tasks are used for this part. Invite the participants to use their practice environ-
ment to try out things while you demonstrate the following:

• Introduce the subject system: Start Jetris, move and drop a few figures.

• Show source code navigation.

• Show textual search.

• Show Java search (cross reference).

• Show DOPG plugin:

– Selecting a graph; the meaning of the names and numbers in the menu;
where the graphs come from (different static allocation points); the
relation to the source code (location of allocation point).

– Navigation through the graph: zoom in/out, stretch/tighten, spring
layout, jump to source, panning, go to Start/Create, find function.

– Working with the graph.

• Show Experimental plugin (exclipse).

The practice tasks should be solved after this short demonstration. After about
10 minutes, the experimenter starts demonstrating the solutions to the first three
tasks. He demonstrates how to find the answers a) with Eclipse standard features,
b) with the help of DOPGs.

178

C.4 Phase 3: Experimental Tasks

1. “Where is the main method?” Solutions: Manual search in project/browser,
textual search by name, Java search for the signature, and find it using
DOPGs (via find start node).

2. “Which is the location in the code where instances of the different Figure
classes are created?” Solutions: Search for constructor, and search using
DOPGs (DOPG list and create nodes).

3. “How is control (rotation etc.) of the Figures implemented, i. e., where is the
key press event transformed to a corresponding application logic method
call?” Solution: find “rotation” in Figures, then search for that; browse
through DOPG (from start node) to find the dispatching location.

C.4 Phase 3: Experimental Tasks

At this point, the participants should have become somewhat familiar with the
environment. Now demonstrate the two use cases that underly the DOPGs of the
two subject systems. First start GanttProject, load the sample project, and enlarge
a nested Gantt task to a length that exceeds the length of the parent’s task. Point
the attention to the parent task which is automatically enlarged as well. Then start
ArgoUML, create two classes, and connect them by an association.

Now ask the participants to switch their Eclipse workspace tows1 (File/Switch
Workspace). The right project and tasks are then loaded automatically. Make sure
that the necessary views are visible for each participant. The participants are now
automatically guided through the differen tasks. After 25 minutes, everyone is
notified by the experimental plugin that the time is over. Now ask everyone to
fill out the post-study questionnaire. Finally, let everyone switch to ws2 and start
over again.

C.5 Phase 4: Finishing

The experiment ends with a short debriefing:

• Collect questionnaires.

• Answer any questions the participants might have about the experiment.

• Tell the participants about when the lottery is to take place.

• Tell them when they can expect to hear about the results of this experiment.

• Tell them that they are not allowed to talk about the experiment to future
participants.

• Thank for participating!

179

Appendix D

Experimental Tasks and Instructions

The instructions and tasks that were presented to the experiment participants
were presented by the Eclipse plugin “exclipse” that was specially developed for
this experiment. It supports messages, timers, and textual aquisition of answers.
The messages that were displayed on the different pages are presented in the
following sections. They were originally written in German.

D.1 Practice System: Jetris

Page 1: General Remarks

The following tasks are intended to help you to get used to the required Eclipse
features:

• Code browser

• Search function (text search)

• Cross reference function (Java search)

• DOPG plugin

First, you should try to get a general idea about the static structure of the Jetris
project. Then you will continue with the practice tasks. Please start working on
these tasks as soon as you are finished with getting basically comfortable with the
Eclipse environment. The first tasks will be resolved by the experimenter, and he
will demonstrate several possible approaches. Similar techniques should be used
to solve the other tasks as well. It is probably best to try out different approaches.
This way, you will learn which technique is best suited for which task.

Attention: Questions and tasks can only be switched forward. You cannot get
back to a previous question. Please stick to one question, until you have found
the answer. Only when you are absolutely sure that you cannot solve the task,
write a comment into the answer textfield and proceed to the next task.

181

Chapter D — Experimental Tasks and Instructions

Page 2: Introduction to Jetris

The parts that are falling down in Jetris are called “Figures”. They are of central
concern for a Tetris game. The graphs for the different Figure classes have been
created during a typical Jetris session. They are available in the DOPG view.

Now change to the DOPG view and select the different graphs from the pull-
down menu. The selected graph is then shown in the DOPG view.

You will find a similar information about a central class of the respective subject
system when you start working on a new system.

Pages 3-8: Tasks

1. Where is the main method? I. e., in which class and in which line?

2. At which locations in the code are instances of the different Figure classes
being created?

3. How is control of the figures (rotation etc.) implemented, i. e., where is the
key event translated to an application logic method call?

4. Who is responsible for moving the current part downwards automatically?

5. When a figure has arrived at the bottom, a new figure appears at the top.

(a) Which conditions in the code decide when a new figure has to be started
from top?

(b) Where are these conditions in the graph (indicate the node number, as
displayed in the tool tip)?

6. How is it recognized that a row is completely filled (and must be eliminated)?

Page 9: End Page

The practice tasks are finished. You may continue to investigate the system or
work with Eclipse until we continue.

D.2 System 1: ArgoUML

Page 1: Introduction to ArgoUML

In this part of the experiment, you will work on some tasks regarding ArgoUML.
ArgoUML was already demonstrated briefly. You can also start it yourself
(Run/Run Last Launched). After startup, a class diagram editor opens up. We
defined two classes and connected them by an association, and then we created a
new class diagram.

Experimental group: This use case was also performed to extract a DOPG for
the ClassDiagramGraphModel instances. Choose the graph in the DOPG view

182

D.3 System 2: GanttProject

(UMLClassDiagram); it is then displayed in the DOPG view. You should try to
use this graph for solving the upcoming tasks.

Control group: The class ClassDiagramGraphModel is of central concern for
class diagrams in ArgoUML. It may be helpful as a starting point of your analyses.

Pages 2-4: Tasks

1. Which code has to be changed to make ArgoUML open up an empty se-
quence diagram instead of an empty class diagram on startup?

2. How is the addition of objects to a diagram (e. g., adding a class to a class
diagram) implemented?
More precisely, which class implements that? Give a short description how
it works.

3. In ArgoUML, it is possible to browser through the selection history. Which
class is responsible for recording selections?

Page 5: End Page

The tasks for ArgoUML are finished. You may continue to investigate the system
until the experiment continues. You can use the text input box if you want to
submit any comments.

D.3 System 2: GanttProject

Page 1: Introduction to GanttProject

In this part of the experiment, you will work on some tasks regarding GanttProject.
GanttProject was already demonstrated briefly. You can also start it yourself
(Run/Run Last Launched). After startup, the Gantt diagram editor opens up.
We loaded the file HouseBuildingSample.gan (Project/Recent Projects). We then
changed the duration of a subtask by enlarging the task’s bar over the limits of its
parent task.

Experimental group: This use case was also performed to extract DOPGs for
the GanttTask instances. The class “GanttTask” represents the work packages.
Choose a graph in the DOPG view (TaskManagerImpl); it is then displayed in the
DOPG view. You should try to use these graphs for solving the upcoming tasks.

Control group: The class GanttTask represents a working package. It is of
central concern for Gantt diagrams in GanttProject. It may be helpful as a starting
point of your analyses.

Pages 2-4: Tasks

1. The tasks are organized as a hierarchy: parent tasks are displayed as a
bracket and enclose the period in which all child tasks are contained. How

183

Chapter D — Experimental Tasks and Instructions

is the length of a parent task adjusted when the length of a child task is
extended over the limits of the parent’s period (i. e., which code is responsible
for that)?

2. Which component is responsible for drawing a task, i. e., where is the rect-
angle of the task bar drawn?

3. Gantt diagrams support dependencies: a task can only be started when an-
other one is finished. Which class is responsible for holding this dependency
information?

Page 5: End Page

The tasks for GanttProject are finished. You may continue to investigate the
system until the experiment continues. You can use the text input box if you want
to submit any comments.

184

Appendix E

Experimental Questionnaires

E.1 Pre-study Questionnaire

1. How many years of programming experience do you have?
W years

2. How many years of Java programming experience?
W years

3. How would you rate your programming experience?
W none, W weak, W average, W good, W very good

4. What is the largest system you have worked on?
W lines of code, or W files Language(s): W

5. How much experience do you have with maintaining code written by some-
one else?
W none, W very little, W some, W quite some, W a lot

6. Which programming environments and tools do you normally use?
W Eclipse, W NetBeans, W others – which ones? ____________________

7. How familiar are you with using the Eclipse workbench for Java develop-
ment?
W none, W very little, W some, W quite some, W a lot

8. How much experience do you have with Java GUI development?
W none, W very little, W some, W quite some, W a lot

9. Did you attend the Software Reengineering Lecture?
W no, W yes, W currently attending

10. Do you know the program GanttProject?
W no, W no, but I know Gantt diagrams/tools, W yes, already used it,
W yes, I use it regularly, W yes, I know the code

185

Chapter E — Experimental Questionnaires

11. Do you know the program ArgoUML?
W no, W no, but I know UML diagram tools, W yes, already used it,
W yes, I use it regularly, W yes, I know the code

E.2 Post-study Questionnaire

1. I could effectively complete the tasks using the provided tools.
W no, W rather no, W rather yes, W yes, W no reply

2. What was missing for completing the tasks effectively?

3. I am sure that my results are correct.
W no, W rather no, W rather yes, W yes, W no reply

4. Which tools or features of Eclipse did you use (0 = not used, 4 = intensively
used), and how helpful did they turn out to be for solving the tasks (0 = not
helpful at all, 4 = very helpful)?

usage intensity helpfulness
0 1 2 3 4 0 1 2 3 4

Codebrowser © © © © © © © © © ©

Text search © © © © © © © © © ©

Java search © © © © © © © © © ©

Debugger © © © © © © © © © ©

Graphs © © © © © © © © © ©

others:
___________________ © © © © © © © © ©

___________________ © © © © © © © © ©

5. Further remarks:

186

Appendix F

Statistical Tests

A number of statistical tests were used in the experiment to test the null hypothesis
that the means of two populations are equal. Each test results in a p-value which
can be regarded as the probability of getting the observed result by pure chance.
These tests are briefly introduced in the following.

F.1 Student’s t-test

A t-test is a statistical hypothesis test in which the test statistic has a Student’s
distribution if the null hypothesis is true. It assumes that the population is
normally distributed. We use the variant by Welch for unequal sample sizes
and potentially unequal variance. Let X and Y be the samples from the two
populations.

t =
X − Y√

s2
X
|X| +

s2
Y
|Y|

where X is the sample mean and sX is the sample variance. The degrees of freedom
d is approximated as follows:

d =

(
s2

X
|X| +

s2
Y
|Y|

)2

s4
X

|X|2·(|X|−1) +
s4

Y
|Y|2·(|Y|−1)

The t and d values can then be used with the t-distribution to calculate the p-value.

F.2 Mann-Whitney U test

The Mann-Whitney U test is a non-parametric test for assessing whether two
samples of observations come from the same distribution. Whereas Student’s

187

Chapter F — Statistical Tests

t-test requires an interval scale, the U test only requires an ordinal scale, and it
does not assume a certain distribution.

Given two samples X and Y, the U value is calculated as follows:

1. Arrange all the observations into a single ranked series, no matter which
sample they are in. Sort the values and then number them from 1 to N =
|X| + |Y|, that is, assign each one its rank.

2. Add up the ranks for the observations which came from sample X, giving
RX. The sum of ranks in sample Y is then RY = N·(N+1)

2 − RX.

3. UX = RX −
|X|·(|X|+1)

2 , UY = RY −
|Y|·(|Y|+1)

2 , U = min(UX,UY)

The value for p can then be read from a significance table.

F.3 Bootstrapping

Bootstrapping is a statistical method that is based on resampling [43]. It produces
an arbitrarily large sample based on a given (small) sample. The distribution of
the sample is considered to be the distribution of the underlying universe. The
method is non-parametric and independent from the size of the available sample.

In the DOPG experiment, bootstrapping is used to calculate the p-value. Given
two samples X and Y, the p-value is calculated as follows:

1. Sample n data points with replacement from the original data and calculate
their average x.

2. Repeat step (1) a large number of times N for both samples X and Y, resulting
in bootstrap estimates x1, x2, . . . , xN and y1, y2, . . . , yN.

3. Calculate the difference between each pair di = xi − yi for i ∈ {1, . . . ,N}.

4. Sort the differences as d(1) ≤ d(2) ≤ . . . ≤ d(N−1) ≤ d(N).

5. Find the zero crossing z of this sequence: dz < 0 and dz+1 ≥ 0. Its position
indicates the one-sided p-value: p = min(z

N ,
N−z

N).

188

Glossary

Allocation Point The point in a program where the regarded object is created; for
example, the location of a malloc or new.

Atomic Method In an OPG for a given object, the methods that implement the
object’s interface are called atomic.

Attribute A logical data value of an object.

Black Box (1) A system or component whose inputs, outputs, and general func-
tion are known but whose contents or implementation are unknown or
irrelevant. (2) Pertaining to an approach that treats a system or component
as in (1). Contrast with: Glass box [85]

Class In object-oriented programming, a class is a blueprint to create objects. It
defines the attributes and methods that the created objects all share.

Component A group of related elements with a unifying common goal or concept
relevant at the architectural level. An atomic component is a non-hierarchical
component that consists of related global constants, variables, subprograms,
and/or user-defined types. A subsystem is a hierarchical component consist-
ing of related atomic components and/or lower-level subsystems. [96] In this
thesis, the terms component and atomic component are used synonymously.

Conceptual View The conceptual view is a view of the software architecture. In
this view, the functionality of the system is mapped to architecture elements
called conceptual components, with coordination and data exchange handled
by elements called connectors. [80]

Dynamic Analysis The process of evaluating a system or component based on
its behavior during execution. Contrast with: Static Analysis [85]

Event A notable occurence at a particular point in time. In dynamic analysis, an
event occurs when an instrumentation point is passed. The event is then
either written to file or processed on-the-fly. Also see: Online, Offline

Execution Time The amount of elapsed time used in executing a computer pro-
gram. [85]

189

Glossary

Execution Trace A record of the sequence of instructions executed during the
execution of a computer program. Often takes the form of a list of code
labels encountered as the program executes. [85]

Finite State Machine/Automaton A computational model consisting of a finite
number of states and transitions between those states, possibly with accom-
panying actions. [85]

Function A software module that performs a specific action, is invoked by the
appearance of its name in an expression, may receive input values, and
returns a single value. [85] A function does not modify the state.

Glass Box (1) A system or component whose internal contents or implementation
are known. (2) Pertaining to an approach that threats a system or component
as in (1). Contrast with: Black Box [85]

Global Variable A variable that can be accessed by two or more non-nested mod-
ules of a computer program without being explicitly passed as a parameter
between the modules. Also see: Local Variable [85]

Heap Object/Variable An object or variable that is created during runtime and
allocated on the heap. It is for example created by calling malloc in C or new
in Java. Such an object has to be explicitly destroyed again (free in C), or it
may be removed by a garbage collector (Java).

Instance One concrete exemplar of an abstraction that supports multiple copies
of the state space, for example abstract data types or classes. The instances
of classes are called objects. [188]

Instrumentation Instructions inserted into software to monitor the operation of
a system or component. [85]

Interface The services of a module are defined by the interfaces it provides. A
module may also need the services of another module to perform its function.
These services are defined by the interfaces it requires. [80]

Label A name or identifier assigned to a computer program statement to enable
other statements to refer to that statement. [85]

Local Variable A variable that can be accessed by only one module or set of
nested modules in a computer program. In contrast to heap objects, a local
variable is allocated on the stack. Also see: Global Variable [85]

Method In object-oriented programming, a method is a subroutine that is exclu-
sively associated either with a class or with an object.

190

Glossary

Multithreading Execution of multiple threads for one process in parallel.

Object-oriented Language A programming language that allows the user to ex-
press a program in terms of objects and messages between those objects. [85]

Object-oriented Programming (OOP) Programming that focusses on the design
and implementation of objects. In particular, OOP builds on the concepts of
encapsulation, polymorphism, and implementation inheritance. [188]

Object An entity that combines state (fields) and behavior (methods) and has some
unique identity. [188]

Offline In dynamic analysis, doing trace analysis after the subject system has
terminated. While it is executed, trace information is just written to a file.
Contrast with: Online

Online In dynamic analysis, doing some kind of analytical event processing while
the subject system is running. Contrast with: Offline

Procedure A portion of a computer program that is named and that performs a
specific action. [85] It may modify state. Contrast with: Function

Program Monitor A software tool that executes concurrently with another pro-
gram and provides detailed information about the execution of the other
program. [85]

Protocol The set of allowed sequences of routine calls that may be invoked on a
component or on an instance of it.

Routine A subprogram that is called by other programs and subprograms. [85]

Runtime (1) The period of time during which a computer program is executing.
(2) see Execution Time. [85]

Statement In a programming language, a meaningful expression that defines
data, specifies program actions, or directs the assembler or compiler. [85]

Static Analysis The process of evaluating a system or component based on its
form, structure, content, or documentation. Contrast with: Dynamic Analy-
sis [85]

Subprogram A separately compilable, executable component of a computer pro-
gram. [85]

Subroutine A routine that returns control to the program or subprogram that
called it. [85]

191

Test (1) An activity in which a system or component is executed under specified
conditions, the results are observed or recorded, and an evaluation is made
of some aspect of the system or component. (2) To conduct an activity as in
(1). [85]

Thread A single sequential flow of control within a process.

Trace (1) A record of the execution of a computer program, showing the sequence
of instructions executed, the names and values of variables, or both. (2) To
produce a record as in (1). [85]

Validation The process of evaluating a system or component during or at the
end of the development process to determine whether it satisfies specified
requirements. [85]

Variable A quantity or data item whose value can change. [85] Also see: Local
variable, global variable, heap variable

View A representation of a whole system from the perspective of a related set of
concerns. [86]

Viewpoint A specification of the conventions for constructing and using a view.
A pattern or template from which to develop individual views by establish-
ing the purposes and audience for a view and the techniques for its creation
and analysis. [86]

Bibliography

[1] Mithun Acharya, Tao Xie, Jian Pei, and Jun Xu. Mining api patterns as
partial orders from source code: From usage scenarios to specifications. In
Proc. of ESEC/FSE ’07, 2007.

[2] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. In Proc.
of Conf. on Programming language design and implementation (PLDI), pages
246–256, New York, NY, USA, 1990. ACM Press.

[3] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns.
In Proc. of 11th Int’l Conf. on Data Engineering (ICDE), pages 3–14, 1995.

[4] Rajeev Alur, Pavol Černý, P. Madhusudan, and Wonhong Nam. Synthesis
of interface specifications for Java classes. In Proc. of 32nd Symp. on
Principles of Programming Languages (POPL ’05), pages 98–109. ACM, 2005.

[5] Glenn Ammons, Rastislav Bodík, and James R. Larus. Mining
specifications. In Proc. 29th Symp. on Principles of Prog. Languages (POPL),
pages 4–16, 2002.

[6] Marc Andries, Gregor Engels, Annegret Habel, Berthold Hoffmann,
Hans-Jörg Kreowski, Sabine Kuske, Detlef Plump, Andy Schürr, and
Gabriele Taentzer. Graph transformation for specification and
programming. Science of Computer Programing, 34(1):1–54, 1999.

[7] Dana Angluin. Inference of reversible languages. Journal of the ACM,
29(3):741–765, 1982.

[8] Dana Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87–106, 1987.

[9] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold.
Efficient and precise dynamic impact analysis using execute-after
sequences. In Proc. of 27th ICSE, pages 432–441. ACM, 2005.

[10] Holger Bär. Protokollprüfung in komponentenorientierten Systemen, pages
179–221. Fraunhofer IESE / FZI, 2003.
http://app2web.fzi.de/themen/ap4/cbse_handbuch.pdf.

193

Bibliography

[11] Holger Bär. Statische Verifikation von Softwareprotokollen. PhD thesis,
University of Karlsruhe, Germany, 2005.

[12] Victor R. Basili. The role of experimentation in software engineering: past,
current, and future. In Proc. of 18th ICSE, pages 442–449, 1996.

[13] C. Bennett, D. Myers, Margaret-Anne Storey, D. M. German, D. Ouellet,
M. Salois, and P. Charland. A survey and evaluation of tool features for
understanding reverse-engineered sequence diagrams. Journal of Software
Maintenance and Evolution: Research and Practice, 20(4):291–315, July 2008.

[14] Árpád Beszédes, Csaba Faragó, Zsolt Mihály Szabó, János Csirik, and
Tibor Gyimóthy. Union slices for program maintenance. In Proc. of 18th
ICSM, pages 12–21, 2002.

[15] Árpád Beszédes, Tamás Gergely, Zsolt Mihály Szabó, János Csirik, and
Tibor Gyimóthy. Dynamic slicing method for maintenance of large C
programs. In Proc. of 5th CSMR, pages 105–113. IEEE Computer Society,
March 2001.

[16] Dirk Beyer, Thomas A. Henzinger, and Vasu Singh. Algorithms for
interface synthesis. In Proc. of 19th Int’l Conf. on Computer Aided Verification
(CAV 2007), volume 4590 of Lecture Notes in Computer Science, pages 4–19.
Springer, 2007.

[17] A. W. Biermann and J. A. Feldman. On the synthesis of finite-state
machines from samples of their behaviour. IEEE Transactions on Computers,
21:591–597, 1972.

[18] David Binkley and Keith B. Gallagher. Program slicing. Advances in
Computers, 43:1–50, 1996.

[19] David Binkley and Mark Harman. A survey of empirical results on
program slicing. Advances in Computers, 62, 2004.

[20] Grady Booch. Software archeology, 2004. A presentation given at the
Rational Users Conference. http://www.booch.com/architecture/blog/
artifacts/Software%20Archeology.ppt.

[21] Lionel C. Briand, Yvan Labiche, and Johanne Leduc. Toward the reverse
engineering of UML sequence diagrams for distributed Java software.
IEEE Transactions on Software Engineering, 32(9):642–663, 2006.

[22] Lionel C. Briand, Yvan Labiche, and Y. Miao. Towards the reverse
engineering of UML sequence diagrams. In Proc. of 10th WCRE, pages
57–66, 2003.

194

Bibliography

[23] Sergey Butkevich, Marco Renedo, Gerald Baumgartner, and Michal Young.
Compiler and tool support for debugging object protocols. In Proc. of 8th
FSE, pages 50–59, New York, NY, USA, 2000. ACM Press.

[24] Andrew Chan, Reid Holmes, Gail C. Murphy, and Annie T. T. Ying.
Scaling an object-oriented system execution visualizer through sampling.
In Proc. of 11th IWPC, pages 237–244, 2003.

[25] Jiun-Liang Chen, Feng-Jian Wang, and Yung-Lin Chen. Slicing
object-oriented programs. In Proc. of 4th Asia-Pacific Software Engineering
and Int’l Computer Science Conf. (APSEC), pages 395–404, 1997.

[26] Zhenqiang Chen and Baowen Xu. Slicing object-oriented java programs.
ACM SIGPLAN Notices, 36(4):33–40, 2001.

[27] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design
recovery: A taxonomy. IEEE Software, 7(1):13–18, 1990.

[28] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek
Sarkar, and Manu Sridharan. Efficient and precise datarace detection for
multithreaded object-oriented programs. In Proc. of Conf. on Programming
language design and implementation (PLDI), pages 258–269. ACM Press, 2002.

[29] Larry B. Christensen. Experimental Methodology. Allyn & Bacon, Boston,
USA, 8th edition, 2001.

[30] Mihai Christodorescu, Somesh Jha, and Christopher Kruegel. Mining
specifications of malicious behavior. In Proc. of 15th FSE, pages 5–14, 2007.

[31] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement. In Proc. of 12th Int’l
Conf. on Computer Aided Verification, volume 1855 of LNCS, pages 154–169.
Springer, 2000.

[32] Jonathan E. Cook and Alexander L. Wolf. Discovering models of software
processes from event-based data. ACM Transactions on Software Engineering
and Methodology, 7(3):215–249, 1998.

[33] Thomas A. Corbi. Program understanding: Challenge for the 1990’s. IBM
Systems Journal, 28(2):294–306, 1989.

[34] Bas Cornelissen. Identification of variation points using dynamic analysis.
In Proc. of 1st International Workshop on Reengineering towards Product Lines
(R2PL), 2005.

[35] Bas Cornelissen, Arie van Deursen, Leon Moonen, and Andy Zaidman.
Visualizing testsuites to aid in software understanding. In Proc. of 11th
CSMR, pages 213–222, 2007.

195

Bibliography

[36] Valentin Dallmeier, Christian Lindig, Andrzej Wasylkowski, and Andreas
Zeller. Mining object behavior with ADABU. In Proc. of 4th Int’l Workshop
on Dynamic Analysis (WODA), 2006.

[37] Valentin Dallmeier, Christian Lindig, and Andreas Zeller. Lightweight
defect localization for Java. In Proc. of 19th ECOOP, pages 528–550, 2005.

[38] Christophe Damas, Bernard Lambeau, Pierre Dupont, and Axel van
Lamsweerde. Generating annotated behavior models from end-user
scenarios. IEEE Transactions on Software Engineering, 31(12):1056–1073, 2005.

[39] Manuvir Das. Unification-based pointer analysis with directional
assignments. In Proc. of Conf. on Programming language design and
implementation, pages 35–46. ACM Press, 2000.

[40] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proc. of
8th European software engineering conference, pages 109–120, 2001.

[41] Stéphane Ducasse, Michele Lanza, and Roland Bertuli. High-level
polymetric views of condensed run-time information. In Proc. of 8th
CSMR, pages 309–318, 2004.

[42] Jürgen Ebert, Volker Riediger, and Andreas Winter. Graph technology in
reverse engineering, the tgraph approach. In Rainer Gimnich, Uwe Kaiser,
Jochen Quante, and Andreas Winter, editors, 10th Workshop Software
Reengineering (WSR 2008), volume 126 of GI Lecture Notes in Informatics
(LNI), pages 67–81. GI, 2008.

[43] Bradley Efron and Robert J. Tibshirani. An introduction to the bootstrap.
Chapman & Hall/CRC, 1998.

[44] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Locating features
in source code. IEEE Transactions on Software Engineering, 29(3), 2003.

[45] Thomas Eisenbarth, Rainer Koschke, and Gunther Vogel. Static trace
extraction. In Proc. of 9th WCRE, pages 128–137, 2002.

[46] Thomas Eisenbarth, Rainer Koschke, and Gunther Vogel. Static object trace
extraction for programs with pointers. Journal of Systems and Software,
77(3):263–284, Sep 2005.

[47] Andrew David Eisenberg and Kris De Volder. Dynamic feature traces:
Finding features in unfamiliar code. In Proc. of 21st ICSM, pages 337–346,
2005.

[48] Mohammad El-Ramly, Eleni Stroulia, and Paul Sorenson. From run-time
behavior to usage scenarios: an interaction-pattern mining approach. In
Proc. of 8th Int’l Conf. on Knowledge Discovery and Data Mining, pages
315–324. ACM Press, 2002.

196

Bibliography

[49] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. Checking
system rules using system-specific, programmer-written compiler
extensions. In Proc. of 4th Symp. on Operating System Design and
Implementation, pages 1–16. USENIX Association, 2000.

[50] Dawson R. Engler, David Yu Chen, and Andy Chou. Bugs as inconsistent
behavior: A general approach to inferring errors in systems code. In Proc.
of Symp. on Operating System Principles, pages 57–72, 2001.

[51] Michael D. Ernst. Static and dynamic analysis: synergy and duality. In
PASTE, pages 35–38. ACM, June 2004. invited talk.

[52] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin.
Dynamically discovering likely program invariants to support program
evolution. IEEE Transactions on Software Engineering, 27(2):99–123, 2001.

[53] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program
dependence graph and its use in optimization. ACM TOPLAS,
9(3):319–349, 1987.

[54] Richard K. Fjeldstad and William T. Hamlen. Application program
maintenance study – report to our respondents. In GUIDE 48 Proceedings,
1983.

[55] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, Boston, MA, USA, 1999.

[56] Mark Gabel and Zhendong Su. Symbolic mining of temporal
specifications. In Proc. of 30th ICSE, pages 51–60, 2008.

[57] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides.
Design Patterns. Professional Computing Series. Addison-Wesley, 1995.

[58] Juan Gargiulo and Spiros Mancoridis. Gadget: A tool for extracting the
dynamic structure of Java programs. In Proc. of 13th Int’l Conf. on Software
Engineering & Knowledge Engineering (SEKE’2001), pages 244–251, 2001.

[59] Nahum D. Gershon. From perception to visualization. In L. Rosenblum,
R. A. Earnshaw, J. Encarnacao, H. Hagen, A. Kaufman, S. Klimenko,
G. Nielsen, F. Post, and D. Thalmann, editors, Scientific Visualization:
Advances and Challenges. Academic Press, 1994.

[60] E. Mark Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967.

[61] Orla Greevy and Stéphane Ducasse. Correlating features and code using a
compact two-sided trace analysis approach. In Proc. of 9th CSMR, pages
314–323, 2005.

197

Bibliography

[62] Thomas Gschwind and Johann Oberleitner. Improving dynamic data
analysis with aspect-oriented programming. In Proc. of 7th CSMR, pages
259–268, 2003.

[63] Yann-Gaël Guéhéneuc, Rémi Douence, and Narendra Jussien. No Java
without caffeine: A tool for dynamic analysis of Java programs. In Proc. of
17th ASE, pages 117–126, 2002.

[64] Tibor Gyimóthy, Árpád Beszédes, and Istán Forgács. An efficient relevant
slicing method for debugging. In Proc. of 7th ESEC/FSE, pages 303–321,
London, UK, 1999. Springer-Verlag.

[65] Dietrich Haak. Werkzeuggestützte Herleitung von Protokollen. Diploma
thesis, University of Stuttgart, Computer Science, February 2004. DA-2135.

[66] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph grammars
with negative application conditions. Fundamenta Informaticae,
26(3/4):287–313, 1996.

[67] Robert J. Hall. Automatic extraction of executable program subsets by
simultaneous dynamic program slicing. Journal Automated Software
Engineering, 2:33–53, 1995.

[68] Abdelwahab Hamou-Lhadj. Techniques to Simplify the Analysis of Execution
Traces for Program Comprehension. PhD thesis, Ottawa-Carleton Institute for
Computer Science, School of Information Technology an Engineering,
University of Ottawa, Ontario, Ottawa, Canada, 2005.

[69] Abdelwahab Hamou-Lhadj, Edna Braun, Daniel Amyot, and Timothy
Lethbridge. Recovering behavioral design models from execution traces.
In Proc. of 9th CSMR, pages 112–121, 2005.

[70] Abdelwahab Hamou-Lhadj and Timothy Lethbridge. Summarizing the
content of large traces to facilitate the understanding of the behaviour of a
software system. In Proc. of 14th ICPC, pages 181–190, 2006.

[71] Abdelwahab Hamou-Lhadj and Timothy C. Lethbridge. Compression
techniques to simplify the analysis of large execution traces. In Proc. of 10th
IWPC, pages 159–168, 2002.

[72] Abdelwahab Hamou-Lhadj and Timothy C. Lethbridge. A survey of trace
exploration tools and techniques. In Proc. of Conf. of the Centre for Advanced
Studies on Collaborative Research (CASCON), pages 42–55. IBM Press, 2004.

[73] Sven Hanssen. Extraktion statischer Traces zur Wiedergewinnung von
Protokollen. Master’s thesis, University of Stuttgart, Computer Science,
May 2000. SA-1768.

198

Bibliography

[74] Timo Heiber. Semi-automatic protocol recovery. Diploma thesis,
University of Stuttgart, Computer Science, 2000. DA-1822.

[75] Johannes Henkel and Amer Diwan. Discovering algebraic specifications
from java classes. In Proc. of 17th ECOOP, volume 2743 of LNCS, pages
431–456. Springer, 2003.

[76] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Permissive
interfaces. In Proc. of 13th FSE, pages 31–40, 2005.

[77] Michael Hind. Pointer analysis: haven’t we solved this problem yet? In
Proc. of Workshop on Program Analysis For Software Tools and Engineering
(PASTE), pages 54–61, 2001.

[78] Michael Hind and Anthony Pioli. Which pointer analysis should I use? In
Int’l Symposium on Software Testing and Analysis (ISSTA), pages 113–123,
2000.

[79] Andreas Höfer and Walter F. Tichy. Status of empirical research in
software engineering. In Empirical Software Engineering Issues, volume 4336
of LNCS, pages 10–19, 2007.

[80] Christine Hofmeister, Robert Nord, and Dilip Soni. Applied Software
Architecture. Object Technology Series. Addison Wesley, 2000.

[81] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation. Addison Wesley, second
edition, 2001.

[82] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing
using dependence graphs. ACM Trans. Program. Lang. Syst., 12(1):26–60,
1990.

[83] Graham Hughes and Tevfik Bultan. Interface grammars for modular
software model checking. In Proc. of Int’l Symp. on Software Testing and
Analysis (ISSTA), pages 39–49, 2007.

[84] IEEE Standards Board. IEEE software engineering standard 729-1993:
Glossary of software engineering terminology, 1983.

[85] IEEE Standards Board. IEEE standard glossary of software engineering
terminology—std. 610.12-1990, 1990.

[86] IEEE Standards Board. IEEE recommended practice for architectural
description of software-intensive systems—std. 1471-2000, 2000.

[87] Ryszard Janicki and Emil Sekerinski. Foundations of the trace assertion
method of module interface specification. IEEE Transactions on Software
Engineering, 27(7):577–598, 2001.

199

Bibliography

[88] Dean F. Jerding and Spencer Rugaber. Using visualization for architectural
localization and extraction. In Proc. of 4th WCRE, pages 56–65, 1997.

[89] Dean F. Jerding, John T. Stasko, and Thomas Ball. Visualizing interactions
in program executions. In Proc. of 19th ICSE, pages 360–370, 1997.

[90] Juanjuan Jiang, Johannes Koskinen, Anna Ruokonen, and Tarja Systä.
Constructing usage scenarios for API redocumentation. In Proc. of 15th
ICPC, pages 259–264, 2007.

[91] Benjamin Jung. Analyse der Struktur von Software-Protokollen. Master’s
thesis, University of Stuttgart, Germany, 2007. DA-2591.

[92] Ralf Kollmann and Martin Gogolla. Capturing dynamic program
behaviour with uml collaboration diagrams. In Proc. of 5th CSMR, pages
58–67, 2001.

[93] Bogdan Korel and Janusz W. Laski. Dynamic program slicing. Inf. Process.
Lett., 29(3):155–163, 1988.

[94] Bogdan Korel and Janusz W. Laski. Dynamic slicing of computer
programs. Journal of Systems and Software, 13(3):187–195, 1990.

[95] Bogdan Korel and Jürgen Rilling. Dynamic program slicing methods.
Information and Software Technology, 40(11-12):647–660, November 1998.
Special issue on program slicing.

[96] Rainer Koschke. Atomic Architectural Component Recovery for Program
Understanding and Evolution. PhD thesis, Institute for Computer Science,
University of Stuttgart, http://www.iste.uni-stuttgart.de/ps/rainer/thesis,
2000.

[97] Rainer Koschke. Zehn Jahre WSR – Zwölf Jahre Bauhaus. In 10th Workshop
Software Reengineering (WSR 2008), volume 126 of GI Lecture Notes in
Informatics (LNI), pages 51–65. GI, 2008.

[98] Rainer Koschke, Jean-Francois Girard, and Martin Würthner. An
intermediate representation for reverse engineering analyses. In Proc. of
5th WCRE, pages 241–250, Oct 1998.

[99] Rainer Koschke and Jochen Quante. On dynamic feature location. In Proc.
of 20th ASE, pages 86–95. ACM Press, November 2005.

[100] Rainer Koschke and Yan Zhang. Component recovery, protocol recovery
and validation in bauhaus. In 3. Workshop Software-Reengineering, Bad
Honnef, Germany, Fachberichte Informatik, May 2001.

[101] Kai Koskimies and Erkki Mäkinen. Automatic synthesis of state machines
from trace diagrams. Software - Practice and Experience, 24(7):643–658, 1994.

200

Bibliography

[102] Kai Koskimies and Hanspeter Mössenböck. Scene: Using scenario
diagrams and active text for illustrating object-oriented programs. In Proc.
of 18th ICSE, pages 366–375, 1996.

[103] Hans-Jörg Kreowski, Renate Klempien-Hinrichs, and Sabine Kuske. Some
essentials of graph transformation. In Recent Advances in Formal Languages
and Applications, volume 25 of Studies in Computational Intelligence, pages
229–254. Springer, 2006.

[104] Philippe Kruchten. Architectural blueprints – the 4+1 view model of
software architecture. IEEE Software, 12(6):42–50, November 1995.

[105] Kevin J. Lang, Barak A. Pearlmutter, and Rodney A. Price. Results of the
Abbadingo One DFA learning competition and a new evidence-driven
state merging algorithm. In V. Honavar and G. Slutzki, editors,
Grammatical Inference; 4th Int’l Colloquium (ICGI-98), volume 1433 of
LNCS/LNAI, pages 1–12. Springer, 1998.

[106] Danny B. Lange and Yuichi Nakamura. Object-oriented program tracing
and visualization. IEEE Computer, 30(5):63–70, 1997.

[107] Michele Lanza and Stéphane Ducasse. Polymetric views-a lightweight
visual approach to reverse engineering. IEEE Transactions on Software
Engineering, 29(9):782–795, 2003.

[108] Loren Larsen and Mary Jean Harrold. Slicing object-oriented software. In
Proc. of 18th ICSE, pages 495–505. ACM Press, 1996.

[109] Meir M. Lehman and Laszlo A. Belady. Program evolution: processes of
software change. Academic Press Professional, Inc., San Diego, CA, USA,
1985.

[110] Vladimir. I. Levenshtein. Binary codes capable of correcting deletions,
insertions and reversals. Soviet Physics Doklady, 10(8):707–710, February
1966.

[111] Zhenmin Li and Yuanyuan Zhou. PR-Miner: automatically extracting
implicit programming rules and detecting violations in large software
code. In Proc. of 10th ESEC/13th FSE, pages 306–315, 2005.

[112] Donglin Liang and Mary Jean Harrold. Slicing objects using system
dependence graphs. In Proc. of ICSM, pages 358–367. IEEE Press, 1998.

[113] Adrian Lienhard, Stéphane Ducasse, and Tudor Gîrba. Object flow
analysis: taking an object-centric view on dynamic analysis. In Proc. of Int’l
Conf. on Dynamic Languages (ICDL), pages 121–140, 2007.

201

Bibliography

[114] Adrian Lienhard, Stéphane Ducasse, and Tudor Gîrba. Object flow
analysis: Taking an object-centric view on dynamic analysis. Journal of
Computer Languages, Systems and Structures, 2008. to appear.

[115] Adrian Lienhard, Stéphane Ducasse, Tudor Gîrba, and Oscar Nierstrasz.
Capturing how objects flow at runtime. In Proc. of Int’l Workshop on Program
Comprehension through Dynamic Analysis (PCODA), pages 39–43, 2006.

[116] Adrian Lienhard, Tudor Gîrba, Orla Greevy, and Oscar Nierstrasz. Test
blueprint - exposing side effects in execution traces to support writing unit
tests. In Proc. of 12th CSMR, pages 83–92, 2008.

[117] Adrian Lienhard, Orla Greevy, and Oscar Nierstrasz. Tracking objects to
detect feature dependencies. In Proc. of 15th ICPC, pages 59–68, 2007.

[118] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Prentice Hall PTR, 2nd edition, 1999.
http://java.sun.com/docs/books/jvms/.

[119] Barbara Liskov. Data abstraction and hierarchy. In OOPSLA ’87: Addendum
to the proceedings on Object-oriented programming systems, languages and
applications, pages 17–34. ACM, 1987.

[120] Chang Liu, En Ye, and Debra J. Richardson. Software library usage pattern
extraction using a software model checker. In Proc. of 21st ASE, pages
301–304, 2006.

[121] Dapeng Liu, Andrian Marcus, Denys Poshyvanyk, and Vaclav Rajlich.
Feature location via information retrieval based filtering of a single
scenario execution trace. In Proc. of 22nd ASE, pages 234–243, 2007.

[122] David Lo and Siau-Cheng Khoo. Quark: Empirical assessment of
automaton-based specification miners. In Proc. of 13th WCRE, pages 51–60,
Washington, DC, USA, 2006. IEEE Computer Society.

[123] David Lo and Siau-Cheng Khoo. Smartic: towards building an accurate,
robust and scalable specification miner. In Proc. of 14th FSE, pages 265–275,
New York, NY, USA, 2006. ACM Press.

[124] David Lo, Siau-Cheng Khoo, and Chao Liu. Efficient mining of iterative
patterns for software specification discovery. In Proc. of 13th Int’l Conf. on
Knowledge Discovery and Data Mining, pages 460–469, 2007.

[125] David Lo, Siau-Cheng Khoo, and Chao Liu. Mining temporal rules for
software mainentance. Journal of Software Maintenance and Evolution:
Research and Practice, 20(4):227–247, July 2008.

202

Bibliography

[126] Davide Lorenzoli, Leonardo Mariani, and Mauro Pezze. Automatic
generation of software behavioral models. In Proc. of 30th ICSE, pages
501–510, 2008.

[127] Kazimiras Lukoit, Norman Wilde, Scott Stowell, and Tim Hennessey.
Tracegraph: Immediate visual location of software features. In Proc. of
ICSM, pages 33–39, 2000.

[128] Erkki Mäkinen and Tarja Systä. MAS - an interactive synthesizer to support
behavioral modeling in UML. In Proc. of 23rd ICSE, pages 15–24, 2001.

[129] Onaiza Maqbool and Haroon Babri. Hierarchical clustering for software
architecture recovery. IEEE Transactions on Software Engineering,
33(11):759–780, 2007.

[130] Markus Mock, Darren C. Atkinson, Craig Chambers, and Susan J. Eggers.
Improving program slicing with dynamic points-to data. In Proc. of 10th
FSE, pages 71–80, 2002.

[131] Gail C. Murphy, David Notkin, and Kevin J. Sullivan. Software reflexion
models: Bridging the gap between source and high-level models. In Proc.
of Symposium on the Foundations of Software Engineering, pages 18–28, 1995.

[132] Oscar Nierstrasz. Regular types for active objects. In Proc. of 8th OOPSLA,
pages 1–15, New York, NY, USA, 1993. ACM Press.

[133] Jeremy W. Nimmer and Michael D. Ernst. Automatic generation of
program specifications. In Proc. of Int’l Symp. on Software testing and
analysis, pages 229–239, New York, NY, USA, 2002. ACM Press.

[134] John T. Nosek and Prashant Palvia. Software maintenance management:
Changes in the last decade. Software Maintenance: Research and Practice,
2:157–174, 1990.

[135] Fumiaki Ohata, Kouya Hirose, Masato Fujii, and Katsuro Inoue. A slicing
method for object-oriented programs using lightweight dynamic
information. In Proc. of 8th Asia-Pacific Software Engineering Conference
(APSEC), pages 273–280, 2001.

[136] Kurt M. Olender and Leon J. Osterweil. Interprocedural static analysis of
sequencing constraints. ACM Transactions on Software Engineering and
Methodology, 1(1):21–52, January 1992.

[137] Carratalá Oncina and P. García. Inferring regular languages in polynomial
update time, volume 1, pages 49–61. World Scientific Publishing, 1991.

[138] David L. Parnas. A technique for software module specification with
examples. Communications of the ACM, 15(5), May 1972.

203

Bibliography

[139] David L. Parnas. Software aging. In Proc. of 16th ICSE, pages 279–287, 1994.

[140] David Lorge Parnas, Paul C. Clements, and David M. Weiss. The modular
structure of complex systems. In Proc. of 7th ICSE, pages 408–417. IEEE
Press, 1984.

[141] Wim De Pauw, Richard Helm, Doug Kimelman, and John M. Vlissides.
Visualizing the behavior of object-oriented systems. In Proc. of OOPSLA,
pages 326–337, 1993.

[142] Wim De Pauw, David H. Lorenz, John M. Vlissides, and Mark N. Wegman.
Execution patterns in object-oriented visualization. In Proc. of 4th USENIX
Conf. on Object-Oriented Technologies and Systems (COOTS), pages 219–234,
1998.

[143] Massimiliano Di Penta, R. E. Kurt Stirewalt, and Eileen Kraemer.
Designing your next empirical study on program comprehension. In Proc.
of 15th ICPC, pages 281–285, 2007.

[144] Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for software
components. IEEE Transactions on Software Engineering, 28(11):1056–1076,
2002.

[145] Lutz Prechelt. Kontrollierte Experimente in der Softwaretechnik. Springer
Verlag, Berlin, 2001.

[146] Jochen Quante. Online construction of dynamic object process graphs. In
Proc. of 11th CSMR, pages 113–122, March 2007.

[147] Jochen Quante. Do dynamic object process graphs support program
understanding? – A controlled experiment. In Proc. of 16th ICPC, pages
73–82, 2008.

[148] Jochen Quante and Rainer Koschke. Dynamic object process graphs. In
Proc. of 10th CSMR, pages 81–90, 2006.

[149] Jochen Quante and Rainer Koschke. Dynamic protocol recovery. In Proc. of
14th WCRE, pages 219–228, 2007.

[150] Jochen Quante and Rainer Koschke. Dynamic object process graphs.
Journal of Systems and Software, 81(4):481–501, April 2008.

[151] Vaclav Rajlich and George S. Cowan. Towards standard for experiments in
program comprehension. In Proc. of 5th IWPC, pages 160–161, 1997.

[152] Anand V. Raman and Jon D. Patrick. The sk-strings method for inferring
PFSA. In Proc. of Workshop on Automata Induction, Grammatical Inference and
Language Acquisition, 1997.

204

Bibliography

[153] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan.
Path-sensitive inference of function precedence protocols. In Proc. of 29th
ICSE, pages 240–250. IEEE Computer Society, 2007.

[154] Aoun Raza, Gunther Vogel, and Erhard Plödereder. Bauhaus – a tool suite
for program analysis and reverse engineering. In Reliable Software
Technologies – Proc. of 11th Ada-Europe Int’l Conf. on Reliable Software
Technologies (Ada-Europe 2006), pages 71–82. Springer, 2006. LNCS 4006.

[155] Steven P. Reiss. Visualizing Java in action. In Proc. of Symposium on Software
Visualization (SoftVis), pages 57–66. ACM, 2003.

[156] Steven P. Reiss and Manos Renieris. Generating Java trace data. In Java
Grande, pages 71–77, 2000.

[157] Steven P. Reiss and Manos Renieris. Encoding program executions. In
Proc. of 23rd ICSE, pages 221–230, 2001.

[158] Steven P. Reiss and Manos Renieris. Languages for dynamic
instrumentation. In Proc. of Workshop on Dynamic Analysis, May 2003.

[159] David Rice. Geekonomics: The Real Cost of Insecure Software.
Addison-Wesley Longman, 2007.

[160] Marc Richetin and François Vernadat. Regular inference for syntactic
pattern recognition: A case study. In Proc. of 7th Intl. Conf. on Pattern
Recognition, pages 1370–1372, 1984.

[161] Tamar Richner and Stéphane Ducasse. Recovering high-level views of
object-oriented applications from static and dynamic information. In Proc.
of ICSM, pages 13–22, 1999.

[162] Tamar Richner and Stéphane Ducasse. Using dynamic information for the
iterative recovery of collaborations and roles. In Proc. of 18th ICSM, pages
34–43, October 2002.

[163] Abhishek Rohatgi, Abdelwahab Hamou-Lhadj, and Juergen Rilling. An
approach for mapping features to code based on static and dynamic
analysis. In Proc. of 16th ICPC, pages 234–239, 2008.

[164] Atanas Rountev, Olga Volgin, and Miriam Reddoch. Static control-flow
analysis for reverse engineering of uml sequence diagrams. In Proc. of
PASTE, pages 96–102, 2005.

[165] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling
Language – Reference Manual. Addison-Wesley, 1998.

[166] Hossein Safyallah and Kamran Sartipi. Dynamic analysis of software
systems using execution pattern mining. In Proc. of 14th ICPC, pages 84–88,
2006.

205

Bibliography

[167] Maher Salah, Trip Denton, Spiros Mancoridis, Ali Shokoufandeh, and
Filippos I. Vokolos. Scenariographer: A tool for reverse engineering class
usage scenarios from method invocation sequences. In Proc. of 21st ICSM,
pages 155–164, 2005.

[168] David Schuler, Valentin Dallmeier, and Christian Lindig. A dynamic
birthmark for Java. In Proc. of 22nd ASE, pages 274–283, 2007.

[169] R. Sekar, Mugdha Bendre, Dinakar Dhurjati, and Pradeep Bollineni. A fast
automaton-based method for detecting anomalous program behaviors. In
Proc. of Symposium on Security and Privacy (SP ’01), pages 144–155, 2001.

[170] Sameer Shende. Profiling and tracing in linux. In Proc. Extreme Linux
Workshop #2, USENIX, June 1999.

[171] Daniel Simon. Lokalisierung von Merkmalen in Softwaresystemen. Ph.d.
dissertation, University of Stuttgart, Germany, 2005.

[172] Dag I. K. Sjøberg, Jo Erskine Hannay, Ove Hansen, Vigdis By Kampenes,
Amela Karahasanovic, Nils-Kristian Liborg, and Anette C. Rekdal. A
survey of controlled experiments in software engineering. IEEE
Transactions on Software Engineering, 31(9):733–753, 2005.

[173] Michael Smit, Eleni Stroulia, and Kenny Wong. Use case redocumentation
from gui event traces. In Proc. of 12th CSMR, pages 263–268, 2008.

[174] Harry M. Sneed and Stefan Opferkuch. Training and certifying software
maintainers. In Proc. of 12th CSMR, pages 113–122, 2008.

[175] Elliot Soloway, Robin Lampert, Stan Letovsky, David Littman, and
Jeannine Pinto. Designing documentation to compensate for delocalized
plans. Commun. ACM, 31(11):1259–1267, 1988.

[176] Amitabh Srivastava and Alan Eustace. ATOM: a system for building
customized program analysis tools. In Proc. of Conference on Programming
Language Design and Implementation, pages 196–205, 1994.

[177] Bjarne Steensgaard. Points-to analysis in almost linear time. In Symposium
on Principles of Programming Languages, pages 32–41, 1996.

[178] Christoph Steindl. Intermodular slicing of object-oriented programs. In
International Conference on Compiler Construction, volume 1383, pages
264–278. Lecture Notes in Computer Science, Springer, 1998.

[179] Christoph Steindl. Program Slicing for Object-Oriented Programming
Languages. Dissertation, Johannes Kepler University Linz, 1999.

[180] Margaret-Anne Storey. Theories, methods and tools in program
comprehension: Past, present and future. In Proc. of 13th IWPC, pages
181–191, 2005.

206

Bibliography

[181] Margaret-Anne D. Storey. A Cognitive Framework for Describing and
Evaluating Software Exploration Tools. PhD thesis, School of Computing
Science, Simon Fraser University, December 1998.

[182] Margaret-Anne D. Storey, Kenny Wong, Hausi A. Müller, P. Fong,
D. Hooper, and K. Hopkins. On designing an experiment to evaluate a
reverse engineering tool. In Proc. of 3rd WCRE, page 31, Washington, DC,
USA, 1996. IEEE Computer Society.

[183] Eleni Stroulia and Tarja Systä. Dynamic analysis for reverse engineering
and program understanding. Applied Computing Review, 10(1), 2002.

[184] Tarja Systä. On the relationships between static and dynamic models in
reverse engineering Java software. In Proc. of 6th WCRE, pages 304–313,
1999.

[185] Tarja Systä. Static and Dynamic Reverse Engineering Techniques for Java
Software Systems. PhD thesis, University of Tampere, Department of
Computer and Information Sciences, Tampere, Finland, May 2000.

[186] Tarja Systä. Understanding the behavior of Java programs. In Proc. of 7th
WCRE, pages 214–223, 2000.

[187] Attila Szegedi, Tamás Gergely, Árpád Beszédes, Tibor Gyimóthy, and
Gabriella Toth. Verifying the concept of union slices on java programs. In
Proc. of 11th CSMR, pages 233–242. IEEE Computer Society, March 2007.

[188] Clemens Szyperski. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley, 2002.

[189] Nikolai Tillmann, Feng Chen, and Wolfram Schulte. Discovering likely
method specifications. In Proc. of 8th Int’l Conf. on Formal Engineering
Methods (ICFEM’06), volume 4260 of LNCS, pages 717–736. Springer, 2006.

[190] Frank Tip. A survey of program slicing techniques. Journal of programming
languages, 3(3):121–189, September 1995.

[191] Paolo Tonella and Alessandra Potrich. Static and dynamic C++ code
analysis for the recovery of the object diagram. In Proc. of 18th ICSM, pages
54–63, 2002.

[192] Paolo Tonella and Alessandra Potrich. Reverse engineering of the
interaction diagrams from C++ code. In Proc. of 19th ICSM, pages 159–168,
2003.

[193] Paolo Tonella, Marco Torchiano, Bart Du Bois, and Tarja Systä. Empirical
studies in reverse engineering: state of the art and future trends. Empirical
Software Engineering, 12(5):551–571, 2007.

207

Bibliography

[194] Sebastián Uchitel, Jeff Kramer, and Jeff Magee. Synthesis of behavioral
models from scenarios. IEEE Transactions on Software Engineering,
29(2):99–115, 2003.

[195] Wil M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster,
G. Schimm, and A. J. M. M. Weijters. Workflow mining: a survey of issues
and approaches. Data & Knowledge Engineering, 47(2):237–267, 2003.

[196] Gunther Vogel. Extraktion statischer Objekt-Traces zur Erkennung und
Beschreibung von Konnektoren. Diploma thesis, University of Stuttgart,
Computer Science, 2001. DA-1940.

[197] Gunther Vogel. Transformation und Vergleich von endlichen Automaten
zur Analyse von Software-Protokollen. In Proceedings der INFORMATIK
2007, Band 2, volume 110 of GI Lecture Notes in Informatics (LNI), pages
268–274. GI, 2007.

[198] Gunther Vogel. Statische Herleitung und Analyse von Software-Protokollen.
PhD thesis, Institute for Computer Science, University of Stuttgart,
2008/09. Work in progress.

[199] Robert J. Walker, Gail C. Murphy, Bjørn N. Freeman-Benson, Darin Wright,
Darin Swanson, and Jeremy Isaak. Visualizing dynamic software system
information through high-level models. In OOPSLA, pages 271–283, 1998.

[200] Neil Walkinshaw, Kirill Bogdanov, Shaukat Ali, and Mike Holcombe.
Automated discovery of state transitions and their functions in source
code. Software Testing, Verification and Reliability, 18(2), 2008.

[201] Neil Walkinshaw, Kirill Bogdanov, Mike Holcombe, and Sarah
Salahuddin. Reverse engineering state machines by interactive grammar
inference. In Proc. of 14th WCRE, pages 209–218, 2007.

[202] Neil Walkinshaw, Marc Roper, and Murray Wood. Understanding
object-oriented source code from the behavioural perspective. In Proc. of
13th IWPC, pages 215–224, 2005.

[203] Tao Wang and Abhik Roychoudhury. Using compressed bytecode traces
for slicing Java programs. In Proc. of 26th ICSE, pages 512–521, 2004.

[204] Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. Detecting
object usage anomalies. In Proc. of 15th FSE, pages 35–44, 2007.

[205] T. Weijters and Wil van der Aalst. Rediscovering workflow models from
event-based data. In V. Hoste and G. de Pauw, editors, Proc. of 11th
Dutch-Belgian Conference on Machine Learning (Benelearn 2001), pages
93–100, 2001.

208

Bibliography

[206] Westley Weimer and George C. Necula. Mining temporal specifications for
error detection. In Proc. of 11th Int’l Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 3440 of LNCS, pages
461–476. Springer, 2005.

[207] Mark D. Weiser. Program Slices: Formal, Psychological, and Practical
Investigations of an Automatic Program Abstraction Method. PhD thesis, The
University of Michigan, 1979.

[208] Mark D. Weiser. Program slicing. In Proc. of 5th ICSE, pages 439–449. IEEE
Computer Society Press, 1981.

[209] John Whaley, Michael C. Martin, and Monica S. Lam. Automatic extraction
of object-oriented component interfaces. In Proc. of Symposium on Software
Testing and Analysis (ISSTA), pages 218–228, July 2002.

[210] Jon Whittle and Johann Schumann. Generating statechart designs from
scenarios. In Proc. of 22nd ICSE, pages 314–323, 2000.

[211] Norman Wilde, Paul Matthews, and Ross Huitt. Maintaining
object-oriented software. IEEE Software, 10(1):75–80, 1993.

[212] Norman Wilde and Michael C. Scully. Software reconnaissance: mapping
program features to code. Journal of Software Maintenance, 7(1):49–62, 1995.

[213] Robert P. Wilson. Efficient, Context-Sensitive Pointer Analysis. PhD thesis,
Department of Electrical Engineering, Stanford University, December 1997.

[214] Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer
analysis for C programs. In Proc. of Conf. on Programming Language Design
and Implementation, pages 1–12, 1995.

[215] W. Eric Wong, Joseph R. Horgan, Swapna S. Gokhale, and Kishor S.
Trivedi. Locating program features using execution slices. In Proc. of
Symposium on Application-Specific Systems and Software Engineering and
Technology (ASSET), pages 194–203, 1999.

[216] Jingwei Wu, Ahmed E. Hassan, and Richard C. Holt. Using graph patterns
to extract scenarios. In Proc. 10th IWPC, pages 239–250, 2002.

[217] Tao Xie and David Notkin. Automatic extraction of object-oriented
observer abstractions from unit-test executions. In Proc. of 6th Int’l Conf. on
Formal Engineering Methods (ICFEM), volume 3308 of LNCS, pages 290–305.
Springer, 2004.

[218] Tao Xie and David Notkin. Automatic extraction of sliced object state
machines for component interfaces. In Proc. 3rd Workshop on Specification
and Verification of Component-Based Systems, pages 39–46, 2004.

209

Bibliography

[219] Jinlin Yang and David Evans. Dynamically inferring temporal properties.
In Proc. of Workshop on Program analysis for software tools and engineering,
pages 23–28, New York, NY, USA, 2004. ACM Press.

[220] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and
Manuvir Das. Perracotta: mining temporal API rules from imperfect
traces. In Proc. of 28th ICSE, pages 282–291, New York, NY, USA, 2006.
ACM Press.

[221] Daniel M. Yellin and Robert E. Strom. Interfaces, protocols, and the
semi-automatic construction of software adaptors. In Proc. of 9th OOPSLA,
pages 176–190, 1994.

[222] Daniel M. Yellin and Robert E. Strom. Protocol specifications and
component adaptors. ACM Trans. Program. Lang. Syst., 19(2):292–333, 1997.

[223] Andy Zaidman. Scalability Solutions for Program Comprehension Through
Dynamic Analysis. PhD thesis, University of Antwerp, Antwerp, the
Netherlands, September 2006.

[224] Andy Zaidman, Toon Calders, Serge Demeyer, and Jan Paredaens.
Applying webmining techniques to execution traces to support the
program comprehension process. In Proc. of 9th CSMR, pages 134–142,
2005.

[225] Andy Zaidman and Serge Demeyer. Managing trace data volume through
a heuristical clustering process based on event execution frequency. In
Proc. of 8th CSMR, pages 329–338, 2004.

[226] Andy Zaidman, Serge Demeyer, Bram Adams, Kris De Schutter, Ghislain
Hoffman, and Bernard De Ruyck. Regaining lost knowledge through
dynamic analysis and aspect orientation. In Proc. of 10th CSMR, pages
91–102, 2006.

[227] Andreas Zendler. Elemente der experimentellen Softwaretechnik. March 2000.

[228] Wolf Zimmermann and Michael Schaarschmidt. Automatic checking of
component protocols in component-based systems. In 5th Intl. Symp. on
Software Composition, SC 2006, volume 4089 of LNCS, pages 1–17. Springer,
March 2006.

210

Index

A

Abstract Syntax Tree
Generalized . 42

Activity Diagram 22, 34, 153
Allocation Point . 35, 53, 56, 77, 125, 189
Application Condition 53
Architectural View 19
Architecture Recovery 25
Atomic Method 22, 31, 90, 189

Call . 45
Automaton

Comparison 108, 114
Language . 170
Learning 101, 112, 154
Minimization 102, 104, 171
Union 104, 109, 155, 170

B

Barchart . 132
Bauhaus 25, 43, 77, 79
Black Box . 21 f., 189
Bootstrap . 133, 188

C

Call Graph.89, 143, 149
Collaboration Diagram 149
Composite Object 47
Conceptual View 19
Concurrency . 166
Context Sensitivity 36, 77 f., 92, 108, 166
Context-Free Grammar 161
Control Dependency 30, 36, 58, 142

Analysis . 56
Control Flow31, 42, 44, 46, 56, 60, 90, 95

Graph 23, 30, 47, 64, 89, 100, 159
Control Group 122, 134
Controlled Experiment.121

Current Stack Graph 65

D

Dangling Edge . 53
Decorator . 92
Defensive Programming 156
Delegate . 146
Delocalized Plan . 37
Dependent Variable 123, 129
Design Documentation 19
Distance Metric . 111
Double-pushout . 53
Dynamic Analysis 19, 37, 128, 189
Dynamic Binding 37, 59, 142

E

Eclipse Plugin . 124
Edit Distance . 109
Exception Handling 46, 47
Experiment 121, 162
Experimental Group 122, 134
Extraneous Variable 123

F

Feature Location 95, 127, 145, 165
Filtering 20, 50, 72, 145, 155
Finite State Automaton . . . 22, 99 f., 104,

160, 169, 190
Deterministic 169
Non-Deterministic 169
Probabilistic 103, 155

Flow Sensitivity 36, 78
Formal Concept Analysis . 145, 159, 165
Forward Engineering 18
Frequent Itemset Mining 158

211

Index

G

Generalization . . 101, 103, 107, 113, 130,
154

Glass Box 21, 156, 190
Global Variable 45, 78
Gluing Graph . 53
Graph . 31, 50

Comparison. .78
Layout . 95, 165
Morphism . 173
Transformation 43 f., 53 ff., 173

H

Heap Object . 78
Heap Variable . 45
Hypothesis . 24, 121

I

IML . 25, 43
Independent Variable 122
Infeasible Path 36, 37, 83
Inheritance . 59
Inlining . 106
Instrumentation . 37, 41, 41, 64, 146, 190

Lightweight 22, 148
Overhead 49, 64, 70 f.

Interaction20, 22, 70, 72, 74, 92, 152, 154
Diagram . 149

Interface 20, 100, 190
Intermediate Representation 42

J

Java Byte Code 43, 146

K

k-tails 102, 113, 147, 154

L

Labeled Transition System.152, 161
Lehman’s Laws . 17
Library Functions 60, 79
Local Variable 45, 78
Logical Component 20

M

Meta-Model . 31, 53
Module

Dependency . 20
View . 19

Multigraph . 31
Multithreading . . . 46, 59, 66, 72, 74, 147,

191

N

Normalization 43, 92

O

Object 22, 30, 78, 191
Access . 45
Constraint Language 152
Flow Analysis 144
Lifetime 44 f., 84, 95
Trace . 30, 50, 63

Object Process Graph 23, 30
Definition 30, 34
Dynamic . 41
Edge Types . 33
Merging . 53
Meta-Model 31 f., 53
Node Types . 33
Slicing . 56
Static 35, 77, 141, 153

Object-Oriented Programming . . 19, 59,
142, 148, 151, 191

Observer Abstraction 155
Offline . 52, 191
Online 52, 63, 166, 191
Overgeneralization . 22, 102 f., 106, 152,

154
Overloading . 59

P

p-value . 133, 187
Points-to Analysis 36, 78, 83
Polymorphism . 37
Post Dominance . 58
Prefix Tree Acceptor 113
Prefix Tree Acceptor 101, 154

212

Index

Product Automaton 109 f., 171
Product Line . 167
Program Monitor 41, 191
Program Transformation 25
Program Understanding . 18, 23, 30, 90,

92, 121, 127 f., 144
Protocol 21, 22, 92, 100, 191

Recovery 21 f., 98 ff., 153
Specification 160
Validation 100, 153, 161
Violation . 29

R

Randomization.123, 128
Raw Graph 50, 56, 64

Construction . 52
Meta-Model .66

Recursion Elimination 104, 106, 153
Reflection . 61
Regular Grammar Inference 22, 154
Regular Language 100, 160
Relevant Class 64, 68, 125
Relevant Node 30, 65
Representativeness 130
RFG . 25
Runtime Overhead 72 ff.

S

Selective Instrumentation 50, 64
Semantic Interface 20
Sequence Diagram 149
Sequencing Effect 122, 130
Sequential Pattern Mining 158
Single-Pushout . 53
sk-strings 102, 113, 155
Slicing . 92, 142
Software

Aging . 17
Architecture . 19
Clustering . 20
Maintenance . 17
Migration . 18
Reengineering 18, 18
Reverse Engineering 18

Visualization 20, 121, 148
Source Location . . 31, 43 ff., 52, 124, 152,

166
Specification Mining 158
Spring Embedder 95
Stack . 21, 29
State . 22
State Diagram . 151
State Slicing . 155
Static Analysis . .19, 25, 36 f., 50, 77, 128,

146, 191
Static Trace Extraction 23, 25, 29, 36,

141, 153, 159
Static vs. Dynamic 77, 157
Statistical Tests 133, 187
Subset Construction 104, 170
Substitution Principle 59
Successor Method 102, 113, 155
Syntactic Interface 19

T

Template . 60
Test . 192

Case . 77
Coverage . 77, 79
State Based. .21
Suite. .77, 80

Trace . 30, 146, 192
Compression 64, 147
Event Type . 45
Size 63 f., 71, 74, 93

U

UML . 34, 149, 151

V

View . 19, 192
Viewpoint . 19, 192
Virtual Machine 37, 41, 43

213

